Graphical Normalizing Flows

Antoine Wehenkel · Gilles Louppe


Keywords: [ Probabilistic Methods ] [ Density Estimation ]

[ Abstract ]
[ Slides
Wed 14 Apr 6 a.m. PDT — 8 a.m. PDT

Abstract: Normalizing flows model complex probability distributions by combining a base distribution with a series of bijective neural networks. State-of-the-art architectures rely on coupling and autoregressive transformations to lift up invertible functions from scalars to vectors. In this work, we revisit these transformations as probabilistic graphical models, showing they reduce to Bayesian networks with a pre-defined topology and a learnable density at each node. From this new perspective, we propose the graphical normalizing flow, a new invertible transformation with either a prescribed or a learnable graphical structure. This model provides a promising way to inject domain knowledge into normalizing flows while preserving both the interpretability of Bayesian networks and the representation capacity of normalizing flows. We show that graphical conditioners discover relevant graph structure when we cannot hypothesize it. In addition, we analyze the effect of $\ell_1$-penalization on the recovered structure and on the quality of the resulting density estimation. Finally, we show that graphical conditioners lead to competitive white box density estimators. Our implementation is available at \url{}.

Chat is not available.