

Graphical Normalizing Flows

Antoine Wehenkel & Gilles Louppe antoine.wehenkel@uliege.be

What?

We improve continuous Bayesian networks with normalizing flows.

How?

With a new conditioner that generalizes coupling and autoregressive conditioners.

Applications?

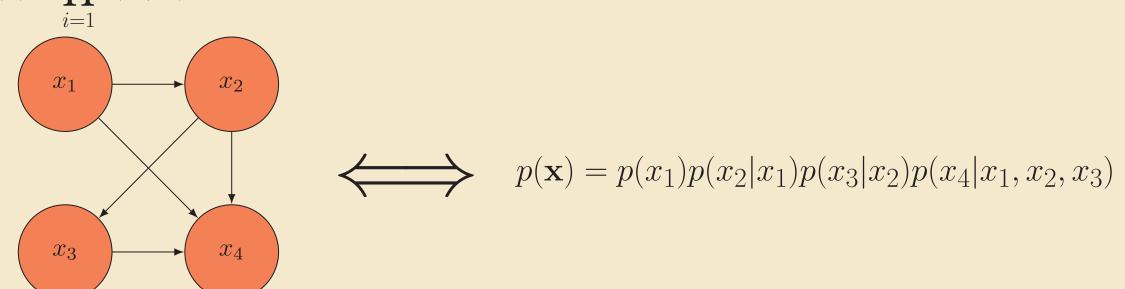
Learning the topology of Bayesian networks, Make normalizing flows more interpretable.

Code

Arxiv 2006.02548

Bayesian Networks

A Bayesian network is a directed acyclic graph that factorizes the model distribution as $p(\mathbf{x}) = \prod p(x_i|\mathcal{P}_i)$.



Pros

- Good for modeling independencies and checking their impact on the modeled density.
- Applications across science and technology.

Cons

- Often used with discrete or discretized data.
- Outdated with respect to the deep learning revolution.

Normalizing Flows

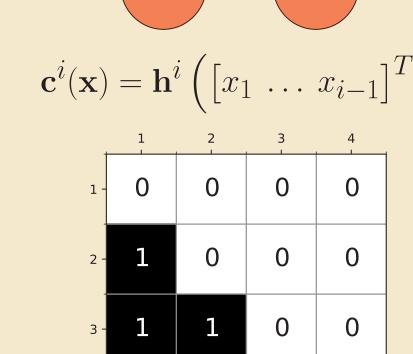
A normalizing flow is a sequence of K invertible transformation steps $\mathbf{g}_k:\mathbb{R}^d o\mathbb{R}^d$ composed together to create an expressive invertible mapping $\mathbf{g}(\mathbf{x})$. Density estimation is performed via the change of variables theorem: $p(\mathbf{x}) = p_{\mathbf{y}}(\mathbf{g}(\mathbf{x})) |\det J_{\mathbf{g}(\mathbf{x})}|$. ____

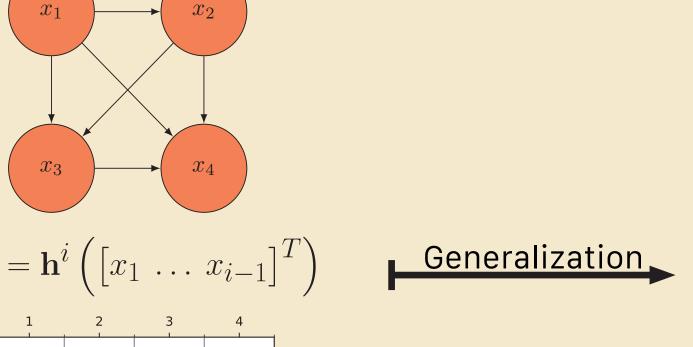


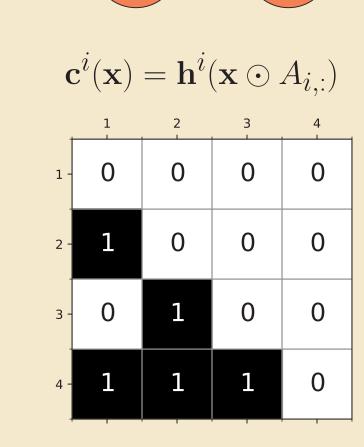
(ensure a simple Jacobian)

Graphical Conditioners

Autoregressive conditioner







Graphical conditioner

These conditioners can be generalized to any Bayesian network topology. Formally, let $A \in \{0,1\}^{d imes d}$ be the adjacency of a Bayesian network, the _ graphical conditioner is defined as $\mathbf{c}^{\imath}(\mathbf{x}) = \mathbf{h}^{\imath}(\mathbf{x} \odot A_{i,:})$.

Topology learning

Choosing the network topology is not always easy!

But learning a good topology can be cast as a continuous optimization problem:

$$\max_{A \in \mathbb{R}^{d \times d}} F(A) \iff \max_{A \in \mathbb{R}^{d \times d}} F(A) \\ \text{s.t. } \mathcal{G}(A) \in \mathsf{DAGs} \iff \sup_{A \in \mathbb{R}^{d \times d}} F(A) \\ \text{s.t. } w(A) = 0$$
 where
$$F(A) = \sum_{j=1}^{N} \log \left(p(\mathbf{x}^{j}) \right) + \lambda_{\ell_{1}} ||A||_{1}.$$

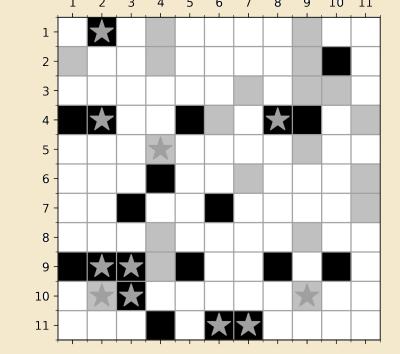
The log-density is evaluated with a graphical normalizing flow, introducing the neural networks parameters it can be written as $p(\mathbf{x}; \theta) = p_{\mathbf{z}}(\mathbf{g}(\mathbf{x}; \theta)) \prod_{i=1}^{a} \left| \frac{\partial g^{i}(x_{i}; \mathbf{h}^{i}(\mathbf{x} \odot A_{i,:}), \theta)}{\partial x_{i}} \right|$.

The acyclicity constraint is expressed as $w(A) := \operatorname{tr} \left((I + \alpha A)^d \right) - d \propto \operatorname{tr} \left(\sum_{k=1}^d \alpha^k A^k \right)$.

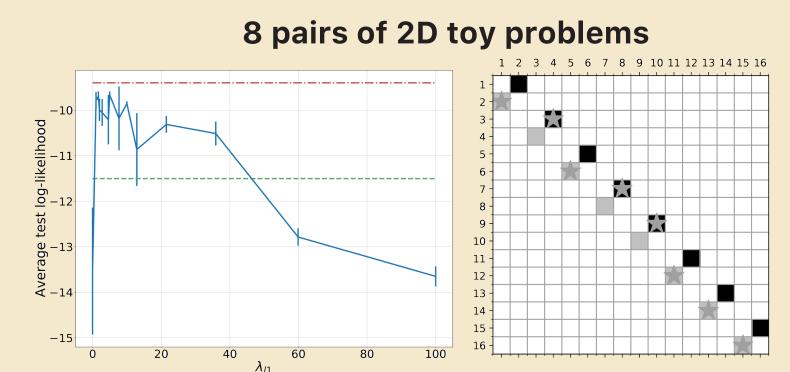
Lagrangian formulation: $\max_{A} \mathbb{E}_{\gamma_1,\gamma_2}[F(A)] - \lambda_t w(A) - \frac{\mu_t}{2} w(A)^2$.

The importance of graph topology

Protein interaction network



On real data, the optimization recovers (stars) a graph that is similar to the one designed by experts.



(left) Test log-likelihood as a function of 11-penalization. Red: Correct topology. Green: Autoregressive conditioner. (right) Recovered topology. Learning the right topology leads to better results than autoregressive conditioners.

Density estimation

Dataset	d	V	Train	Test
Arithmetic Circuit	8	8	10,000	5,000
8 Pairs	16	8	10,000	5,000
Tree	7	8	10,000	5,000
Protein	11	20	6,000	1,466
POWER	6	≤ 15	1,659,917	204, 928
GAS	8	≤ 28	852, 174	105, 206
HEPMASS	21	≤ 210	315, 123	174,987
MINIBOONE	43	≤ 903	29,556	3,648
BSDS300	63	$\leq 1,953$	1,000,000	250,000

We tested density estimation performance on many diverse datasets. **Graphical conditioners outperform** coupling and autoregressive flows.

Prescribed topology

Conditioner	Graphical	Autoreg.
Arithmetic Circuit	$3.99 \pm .16$	3.06±.38
8 Pairs	$-9.40 \pm .06$	$-11.50\pm.2$
Tree	$-6.85 \pm .02$	$-6.96 \pm .05$
Protein	$6.46 \pm .08$	$7.52 \pm .10$

Learned topology

Dataset	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
Coup.	$-5.60 \pm .00$	$-3.05 \pm .01$	$-25.74 \pm .01$	$-38.34 \pm .02$	57.33±.00
(a) Auto.	$-3.55 \pm .00$	$-0.34 \pm .01$	$-21.66 \pm .01$	$-16.70 \pm .05$	$63.74 \pm .00$
Graph.	$-2.80 \pm .01$	$1.99 \pm .02$	$-21.18 \pm .07$	$-19.67 \pm .06$	$62.85 \pm .07$
Coup.	$0.25 \pm .00$	$5.12 \pm .03$	$-20.55 \pm .04$	$-32.04 \pm .12$	$107.17_{\pm .46}$
(b)Auto.	$0.58 \pm .00$	$9.79 \pm .04$	$-14.52 \pm .16$	$-11.66 \pm .02$	$151.29 \pm .31$
Graph.	$^{0.62}\pm.04$	$^{10.15}\pm.15$	$-14.17 \pm .13$	$-16.23 \pm .52$	$^{155.22}\pm.11$

Take home messages

- Continuous Bayesian networks can be combined with deep generative models.
- A correct prescribed topology improves the performance of normalizing flows.
- It is possible to discover relevant Bayesian network topology with graphical normalizing flows.