Session

Sampling Methods

Moderator: Maurizio Filippone



Abstract:

Chat is not available.

Tue 13 April 11:30 - 11:45 PDT

(Oral)
Couplings for Multinomial Hamiltonian Monte Carlo

Kai Xu · Tor Erlend Fjelde · Charles Sutton · Hong Ge

Hamiltonian Monte Carlo (HMC) is a popular sampling method in Bayesian inference. Recently, Heng & Jacob (2019) studied Metropolis HMC with couplings for unbiased Monte Carlo estimation, establishing a generic parallelizable scheme for HMC. However, in practice a different HMC method, multinomial HMC, is considered as the go-to method, e.g. as part of the no-U-turn sampler. In multinomial HMC, proposed states are not limited to end-points as in Metropolis HMC; instead points along the entire trajectory can be proposed. In this paper, we establish couplings for multinomial HMC, based on optimal transport for multinomial sampling in its transition. We prove an upper bound for the meeting time -- the time it takes for the coupled chains to meet -- based on the notion of local contractivity. We evaluate our methods using three targets: 1,000 dimensional Gaussians, logistic regression and log-Gaussian Cox point processes. Compared to Heng & Jacob (2019), coupled multinomial HMC generally attains a smaller meeting time, and is more robust to choices of step sizes and trajectory lengths, which allows re-use of existing adaptation methods for HMC. These improvements together paves the way for a wider and more practical use of coupled HMC methods.

[ ]
Tue 13 April 11:45 - 12:00 PDT

(Oral)
An Adaptive-MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo

Matthew Hoffman · Alexey Radul · Pavel Sountsov

Hamiltonian Monte Carlo (HMC) is a powerful MCMC algorithm based on simulating Hamiltonian dynamics. Its performance depends strongly on choosing appropriate values for two parameters: the step size used in the simulation, and how long the simulation runs for. The step-size parameter can be tuned using standard adaptive-MCMC strategies, but it is less obvious how to tune the simulation-length parameter. The no-U-turn sampler (NUTS) eliminates this problematic simulation-length parameter, but NUTS’s relatively complex control flow makes it difficult to efficiently run many parallel chains on accelerators such as GPUs. NUTS also spends some extra gradient evaluations relative to HMC in order to decide how long to run each iteration without violating detailed balance. We propose ChEES-HMC, a simple adaptive-MCMC scheme for automatically tuning HMC’s simulation-length parameter, which minimizes a proxy for the autocorrelation of the state’s second moments. We evaluate ChEES-HMC and NUTS on many tasks, and find that ChEES-HMC typically yields larger effective sample sizes per gradient evaluation than NUTS does. When running many chains on a GPU, ChEES-HMC can also run significantly more gradient evaluations per second than NUTS, allowing it to quickly provide accurate estimates of posterior expectations.

[ ]
Tue 13 April 12:00 - 12:15 PDT

(Oral)
Maximal Couplings of the Metropolis-Hastings Algorithm

Guanyang Wang · John O'Leary · Pierre Jacob

Couplings play a central role in the analysis of Markov chain Monte Carlo algorithms and appear increasingly often in the algorithms themselves, e.g. in convergence diagnostics, parallelization, and variance reduction techniques. Existing couplings of the Metropolis-Hastings algorithm handle the proposal and acceptance steps separately and fall short of the upper bound on one-step meeting probabilities given by the coupling inequality. This paper introduces maximal couplings which achieve this bound while retaining the practical advantages of current methods. We consider the properties of these couplings and examine their behavior on a selection of numerical examples.

[ ]
Tue 13 April 12:15 - 12:30 PDT

(Oral)
GANs with Conditional Independence Graphs: On Subadditivity of Probability Divergences

Mucong Ding · Constantinos Daskalakis · Soheil Feizi

Generative Adversarial Networks (GANs) are modern methods to learn the underlying distribution of a data set. GANs have been widely used in sample synthesis, de-noising, domain transfer, etc. GANs, however, are designed in a model-free fashion where no additional information about the underlying distribution is available. In many applications, however, practitioners have access to the underlying independence graph of the variables, either as a Bayesian network or a Markov Random Field (MRF). We ask: how can one use this additional information in designing model-based GANs? In this paper, we provide theoretical foundations to answer this question by studying subadditivity properties of probability divergences, which establish upper bounds on the distance between two high-dimensional distributions by the sum of distances between their marginals over (local) neighborhoods of the graphical structure of the Bayes-net or the MRF. We prove that several popular probability divergences satisfy some notion of subadditivity under mild conditions. These results lead to a principled design of a model-based GAN that uses a set of simple discriminators on the neighborhoods of the Bayes-net/MRF, rather than a giant discriminator on the entire network, providing significant statistical and computational benefits. Our experiments on synthetic and real-world datasets demonstrate the benefits of our principled design of model-based GANs.

[ ]