Skip to yearly menu bar Skip to main content


Poster

Local Competition and Stochasticity for Adversarial Robustness in Deep Learning

Konstantinos Panagiotis Panousis · Sotirios Chatzis · Antonios Alexos · Sergios Theodoridis

Keywords: [ Deep Learning ] [ Other Deep Learning ]


Abstract:

This work addresses adversarial robustness in deep learning by considering deep networks with stochastic local winner-takes-all (LWTA) activations. This type of network units result in sparse representations from each model layer, as the units are organized in blocks where only one unit generates a non-zero output. The main operating principle of the introduced units lies on stochastic arguments, as the network performs posterior sampling over competing units to select the winner. We combine these LWTA arguments with tools from the field of Bayesian non-parametrics, specifically the stick-breaking construction of the Indian Buffet Process, to allow for inferring the sub-part of each layer that is essential for modeling the data at hand. Then, inference is performed by means of stochastic variational Bayes. We perform a thorough experimental evaluation of our model using benchmark datasets. As we show, our method achieves high robustness to adversarial perturbations, with state-of-the-art performance in powerful adversarial attack schemes.

Chat is not available.