Poster

Random Coordinate Underdamped Langevin Monte Carlo

Zhiyan Ding · Qin Li · Jianfeng Lu · Stephen Wright

Keywords: [ Algorithms, Optimization and Computation Methods ] [ Monte Carlo Methods ]

[ Abstract ]
Tue 13 Apr 2 p.m. PDT — 4 p.m. PDT

Abstract:

The Underdamped Langevin Monte Carlo (ULMC) is a popular Markov chain Monte Carlo sampling method. It requires the computation of the full gradient of the log-density at each iteration, an expensive operation if the dimension of the problem is high. We propose a sampling method called Random Coordinate ULMC (RC-ULMC), which selects a single coordinate at each iteration to be updated and leaves the other coordinates untouched. We investigate the computational complexity of RC-ULMC and compare it with the classical ULMC for strongly log-concave probability distributions. We show that RC-ULMC is always cheaper than the classical ULMC, with a significant cost reduction when the problem is highly skewed and high dimensional. Our complexity bound for RC-ULMC is also tight in terms of dimension dependence.

Chat is not available.