Poster

Differentially Private Weighted Sampling

Edith Cohen · Ofir Geri · Tamas Sarlos · Uri Stemmer

Keywords: [ Ethics and Safety ] [ Privacy-preserving Statistics and Machine Learning ]

[ Abstract ]
Tue 13 Apr 2 p.m. PDT — 4 p.m. PDT

Abstract:

Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile summary that provides a sparse set of representative keys and supports approximate evaluations of query statistics. We propose private weighted sampling (PWS): A method that sanitizes a weighted sample as to ensure element-level differential privacy, while retaining its utility to the maximum extent possible. PWS maximizes the reporting probabilities of keys and estimation quality of a broad family of statistics. PWS improves over the state of the art even for the well-studied special case of private histograms, when no sampling is performed. We empirically observe significant performance gains of 20%-300% increase in key reporting for common Zipfian frequency distributions and accurate estimation with x2-8 lower frequencies. PWS is applied as a post-processing of a non-private sample, without requiring the original data. Therefore, it can be a seamless addition to existing implementations, such as those optimizes for distributed or streamed data. We believe that due to practicality and performance, PWS may become a method of choice in applications where privacy is desired.

Chat is not available.