Poster

Stochastic Gradient Descent Meets Distribution Regression

Nicole Mücke

Keywords: [ Models and Methods ] [ Kernel Methods ]

[ Abstract ]
Thu 15 Apr 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract:

Stochastic gradient descent (SGD) provides a simple and efficient way to solve a broad range of machine learning problems. Here, we focus on distribution regression (DR), involving two stages of sampling: Firstly, we regress from probability measures to real-valued responses. Secondly, we sample bags from these distributions for utilizing them to solve the overall regression problem. Recently, DR has been tackled by applying kernel ridge regression and the learning properties of this approach are well understood. However, nothing is known about the learning properties of SGD for two stage sampling problems.
We fill this gap and provide theoretical guarantees for the performance of SGD for DR. Our bounds are optimal in a mini-max sense under standard assumptions.

Chat is not available.