Skip to yearly menu bar Skip to main content


Poster

Competing AI: How does competition feedback affect machine learning?

Tony Ginart · Eva Zhang · Yongchan Kwon · James Zou

Keywords: [ Ethics and Safety ] [ Societal Impacts of Machine Learning ]


Abstract:

This papers studies how competition affects machine learning (ML) predictors. As ML becomes more ubiquitous, it is often deployed by companies to compete over customers. For example, digital platforms like Yelp use ML to predict user preference and make recommendations. A service that is more often queried by users, perhaps because it more accurately anticipates user preferences, is also more likely to obtain additional user data (e.g. in the form of a Yelp review). Thus, competing predictors cause feedback loops whereby a predictor's performance impacts what training data it receives and biases its predictions over time. We introduce a flexible model of competing ML predictors that enables both rapid experimentation and theoretical tractability. We show with empirical and mathematical analysis that competition causes predictors to specialize for specific sub-populations at the cost of worse performance over the general population. We further analyze the impact of predictor specialization on the overall prediction quality experienced by users. We show that having too few or too many competing predictors in a market can hurt the overall prediction quality. Our theory is complemented by experiments on several real datasets using popular learning algorithms, such as neural networks and nearest neighbor methods.

Chat is not available.