Skip to yearly menu bar Skip to main content


Non-Volume Preserving Hamiltonian Monte Carlo and No-U-TurnSamplers

Hadi Mohasel Afshar · Rafael Oliveira · Sally Cripps

Keywords: [ Probabilistic Methods ] [ Sampling ]


Volume preservation is usually regarded as a necessary property for the leapfrog transition functions that are used in Hamiltonian Monte Carlo (HMC) and No-U-Turn (NUTS) samplers to guarantee convergence to the target distribution. In this work we rigorously prove that with minimal algorithmic modifications, both HMC and NUTS can be combined with transition functions that are not necessarily volume preserving. In light of these results, we propose a non-volume preserving transition function that conserves the Hamiltonian better than the baseline leapfrog mechanism, on piecewise-continuous distributions. The resulting samplers do not require any assumptions on the geometry of the discontinuity boundaries, and our experimental results show a significant improvement upon traditional HMC and NUTS.

Chat is not available.