Poster

Stochastic Linear Bandits Robust to Adversarial Attacks

Ilija Bogunovic · Arpan Losalka · Andreas Krause · Jonathan Scarlett

Keywords: [ Learning Theory and Statistics ] [ Decision Processes and Bandits ]

[ Abstract ]
Thu 15 Apr 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract: We consider a stochastic linear bandit problem in which the rewards are not only subject to random noise, but also adversarial attacks subject to a suitable budget $C$ (i.e., an upper bound on the sum of corruption magnitudes across the time horizon). We provide two variants of a Robust Phased Elimination algorithm, one that knows $C$ and one that does not. Both variants are shown to attain near-optimal regret in the non-corrupted case $C = 0$, while incurring additional additive terms respectively having a linear and quadratic dependency on $C$ in general. We present algorithm-independent lower bounds showing that these additive terms are near-optimal. In addition, in a contextual setting, we revisit a setup of diverse contexts, and show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing $C$.

Chat is not available.