Poster

Adversarially Robust Estimate and Risk Analysis in Linear Regression

Yue Xing · Ruizhi Zhang · Guang Cheng

Keywords: [ Learning Theory and Statistics ] [ Statistical Learning Theory ]

[ Abstract ]
Tue 13 Apr 6:30 p.m. PDT — 8:30 p.m. PDT

Abstract:

Adversarial robust learning aims to design algorithms that are robust to small adversarial perturbations on input variables. Beyond the existing studies on the predictive performance to adversarial samples, our goal is to understand statistical properties of adversarial robust estimates and analyze adversarial risk in the setup of linear regression models. By discovering the statistical minimax rate of convergence of adversarial robust estimators, we emphasize the importance of incorporating model information, e.g., sparsity, in adversarial robust learning. Further, we reveal an explicit connection of adversarial and standard estimates, and propose a straightforward two-stage adversarial training framework, which facilitates to utilize model structure information to improve adversarial robustness. In theory, the consistency of the adversarial robust estimator is proven and its Bahadur representation is also developed for the statistical inference purpose. The proposed estimator converges in a sharp rate under either low-dimensional or sparse scenario. Moreover, our theory confirms two phenomena in adversarial robust learning: adversarial robustness hurts generalization, and unlabeled data help improve the generalization. In the end, we conduct numerical simulations to verify our theory.

Chat is not available.