Skip to yearly menu bar Skip to main content


Curriculum Learning by Optimizing Learning Dynamics

Tianyi Zhou · Shengjie Wang · Jeff Bilmes


Keywords: [ Deep Learning ] [ Optimization for Neural Networks ]


We study a novel curriculum learning scheme where in each round, samples are selected to achieve the greatest progress and fastest learning speed towards the ground-truth on all available samples. Inspired by an analysis of optimization dynamics under gradient flow for both regression and classification, the problem reduces to selecting training samples by a score computed from samples' residual and linear temporal dynamics. It encourages the model to focus on the samples at learning frontier, i.e., those with large loss but fast learning speed. The scores in discrete time can be estimated via already-available byproducts of training, and thus require a negligible amount of extra computation. We discuss the properties and potential advantages of the proposed dynamics optimization via current deep learning theory and empirical study. By integrating it with cyclical training of neural networks, we introduce "dynamics-optimized curriculum learning (DoCL)", which selects the training set for each step by weighted sampling based on the scores. On nine different datasets, DoCL significantly outperforms random mini-batch SGD and recent curriculum learning methods both in terms of efficiency and final performance.

Chat is not available.