Unconstrained MAP Inference, Exponentiated Determinantal Point Processes, and Exponential Inapproximability
Naoto Ohsaka
2021 Poster
Abstract
We study the computational complexity of two hard problems on determinantal point processes (DPPs). One is maximum a posteriori (MAP) inference, i.e., to find a principal submatrix having the maximum determinant. The other is probabilistic inference on exponentiated DPPs (E-DPPs), which can sharpen or weaken the diversity preference of DPPs with an exponent parameter $p$.
We prove the following complexity-theoretic hardness results that explain the difficulty in approximating unconstrained MAP inference and the normalizing constant for E-DPPs.
(1) Unconstrained MAP inference for an $n \times n$ matrix is NP-hard to approximate within a $2^{\beta n}$-factor, where $\beta = 10^{-10^{13}}$. This result improves upon a $(9/8-\epsilon)$-factor inapproximability given by Kulesza and Taskar (2012).
(2) The normalizing constant for E-DPPs of any (fixed) constant exponent $p \geq \beta^{-1} = 10^{10^{13}}$ is NP-hard to approximate within a $2^{\beta pn}$-factor. This gives a(nother) negative answer to open questions posed by Kulesza and Taskar (2012); Ohsaka and Matsuoka (2020).
Video
Chat is not available.
Successful Page Load