Poster

LassoNet: Neural Networks with Feature Sparsity

Ismael Lemhadri · Feng Ruan · Rob Tibshirani

Keywords: [ Models and Methods ] [ Feature Selection ]

[ Abstract ]
Thu 15 Apr 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract: Much work has been done recently to make neural networks more interpretable, and one approach is to arrange for the network to use only a subset of the available features. In linear models, Lasso (or $\ell_1$-regularized) regression assigns zero weights to the most irrelevant or redundant features, and is widely used in data science. However the Lasso only applies to linear models. Here we introduce LassoNet, a neural network framework with global feature selection. Our approach achieves feature sparsity by allowing a feature to participate in a hidden unit only if its linear representative is active. Unlike other approaches to feature selection for neural nets, our method uses a modified objective function with constraints, and so integrates feature selection with the parameter learning directly. As a result, it delivers an entire regularization path of solutions with a range of feature sparsity. In experiments with real and simulated data, LassoNet significantly outperforms state-of-the-art methods for feature selection and regression. The LassoNet method uses projected proximal gradient descent, and generalizes directly to deep networks. It can be implemented by adding just a few lines of code to a standard neural network.

Chat is not available.