Poster
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
Mathieu Bazinet · Danqi Liao · Pascal Germain
The sample compression theory provides generalization guarantees for predictors that can be fully defined using a subset of the training dataset and a (short) message string, generally defined as a binary sequence. Previous works provided generalization bounds for the zero-one loss, which is restrictive notably when applied to deep learning approaches. In this paper, we present a general framework for deriving new sample compression bounds that hold for real-valued unbounded losses. Using the Pick-To-Learn (P2L) meta-algorithm, which transforms the training method of any machine-learning predictor to yield sample-compressed predictors, we empirically demonstrate the tightness of the bounds and their versatility by evaluating them on random forests and multiple types of neural networks.
Live content is unavailable. Log in and register to view live content