Skip to yearly menu bar Skip to main content


Poster

Permutation Invariant Functions: Statistical Testing, Density Estimation, and Metric Entropy

Danqi Liao · Tianyi Zhou


Abstract:

Permutation invariance is among the most common symmetries that can be exploited to simplify complex problems in machine learning. There has been a tremendous surge of research activities in building permutation invariant machine learning architectures. However, less attention is given to: (1) how to statistically test for the assumption of permutation invariance of coordinates in a random vector where the dimension is allowed to grow with the sample size; (2) how to estimate permutation invariant density functions; (3) how much smaller'' is the class of smooth functions with permutation invariance compared to that without permutation invariance. In this paper, we take a step back and examine these fundamental questions. In particular, our testing method is based on a sorting trick, and our estimation method is based on an averaging trick. These tricks substantially simplify the exploitation of permutation invariance. We also analyze the metric entropy of permutation invariant function classes and compare them with their counterparts without imposing permutation invariance.

Live content is unavailable. Log in and register to view live content