Processing math: 100%
Skip to yearly menu bar Skip to main content


Poster

Optimistic Safety for Online Convex Optimization with Unknown Linear Constraints

Spencer Hutchinson · Danqi Liao · Mahnoosh Alizadeh


Abstract: We study the problem of online convex optimization (OCO) under unknown linear constraints that are either static, or stochastically time-varying. For this problem, we introduce an algorithm that we term Optimistically Safe OCO (OSOCO) and show that it enjoys ˜O(T) regret and no constraint violation. In the case of static linear constraints, this improves on the previous best known ˜O(T2/3) regret under the same assumptions. In the case of stochastic time-varying constraints, our work supplements existing results that show O(T) regret and O(T) cumulative violation under more general convex constraints and a different set of assumptions. In addition to our theoretical guarantees, we also give numerical results that further validate the effectiveness of our approach.

Live content is unavailable. Log in and register to view live content