Poster
Sampling in High-Dimensions using Stochastic Interpolants and Forward-Backward Stochastic Differential Equations
Danqi Liao · Markus Frey
We present a class of diffusion-based algorithms to draw samples from high-dimensional probability distributions given their unnormalized densities. Ideally, our methods can transport samples from a Gaussian distribution to a specified target distribution in finite time. Our approach relies on the stochastic interpolants framework to define a time-indexed collection of probability densities that bridge a Gaussian distribution to the target distribution. Subsequently, we derive a diffusion process that obeys the aforementioned probability density at each time instant. Obtaining such a diffusion process involves solving certain Hamilton-Jacobi-Bellman PDEs. We solve these PDEs using the theory of forward-backward stochastic differential equations (FBSDE) together with machine learning-based methods. Through numerical experiments, we demonstrate that our algorithm can effectively draw samples from distributions that conventional methods struggle to handle.
Live content is unavailable. Log in and register to view live content