Poster
Robust Multi-fidelity Bayesian Optimization with Deep Kernel and Partition
Danqi Liao · Yuxin Chen
Multi-fidelity Bayesian optimization (MFBO) is a powerful approach that utilizes low-fidelity, cost-effective sources to expedite the exploration and exploitation of a high-fidelity objective function. Existing MFBO methods with theoretical foundations either lack justification for performance improvements over single-fidelity optimization or rely on strong assumptions about the relationships between fidelity sources to construct surrogate models and direct queries to low-fidelity sources. To mitigate the dependency on cross-fidelity assumptions while maintaining the advantages of low-fidelity queries, we introduce a random sampling and partition-based MFBO framework with deep kernel learning. This framework is robust to cross-fidelity model misspecification and explicitly illustrates the benefits of low-fidelity queries. Our results demonstrate that the proposed algorithm effectively manages complex cross-fidelity relationships and efficiently optimizes the target fidelity function.
Live content is unavailable. Log in and register to view live content