Skip to yearly menu bar Skip to main content


Poster

Hodge-Compositional Edge Gaussian Processes

Maosheng Yang · Slava Borovitskiy · Elvin Isufi

MR1 & MR2 - Number 163

Abstract:

We propose principled Gaussian processes (GPs) for modeling functions defined over the edge set of a simplicial 2-complex, a structure similar to a graph in which edges may form triangular faces. This approach is intended for learning flow-type data on networks where edge flows can be characterized by the discrete divergence and curl. Drawing upon the Hodge decomposition, we first develop classes of divergence-free and curl-free edge GPs, suitable for various applications. We then combine them to create Hodge-compositional edge GPs that are expressive enough to represent any edge function. These GPs facilitate direct and independent learning for the different Hodge components of edge functions, enabling us to capture their relevance during hyperparameter optimization. To highlight their practical potential, we apply them for flow data inference in currency exchange, ocean currents and water supply networks, comparing them to alternative models.

Chat is not available.