Skip to yearly menu bar Skip to main content


Poster

A Unified Framework for Discovering Discrete Symmetries

Pavan Karjol · Rohan Kashyap · Aditya Gopalan · Prathosh A P

MR1 & MR2 - Number 137
[ ]
Fri 3 May 8 a.m. PDT — 8:30 a.m. PDT

Abstract:

We consider the problem of learning a function respecting a symmetry from among a class of symmetries. We develop a unified framework that enables symmetry discovery across a broad range of subgroups including locally symmetric, dihedral and cyclic subgroups. At the core of the framework is a novel architecture composed of linear, matrix-valued and non-linear functions that expresses functions invariant to these subgroups in a principled manner. The structure of the architecture enables us to leverage multi-armed bandit algorithms and gradient descent to efficiently optimize over the linear and the non-linear functions, respectively, and to infer the symmetry that is ultimately learnt. We also discuss the necessity of the matrix-valued functions in the architecture. Experiments on image-digit sum and polynomial regression tasks demonstrate the effectiveness of our approach.

Live content is unavailable. Log in and register to view live content