Abstract:
Understanding causal relationships between variables is a fundamental problem with broad impacts in numerous scientific fields. While extensive research have been dedicated to _learning_ causal graphs from data, its complementary concept of _testing_ causal relationships has remained largely unexplored. In our work, we take the initiative to formally delve into the _testing_ aspect of causal discovery. While _learning_ involves the task of recovering the Markov equivalence class (MEC) of the underlying causal graph from observational data, our _testing_ counterpart addresses a critical question: _Given a specific MEC, can we determine if the underlying causal graph belongs to it with observational data?_We explore constraint-based testing methods by establishing bounds on the required number of conditional independence tests. Our bounds are in terms of the size of the maximum clique (s′) and the size of the maximum undirected clique (s) of the given MEC. In the worst case, we show a lower bound of exp(Ω(s)) independence tests. We then give an algorithm that resolves the task with exp(O(s′)) independence tests. Notably, our lower and upper bounds coincide when considering moral MECs (s′=s). Compared to _learning_, where algorithms often use a number of independence tests that is exponential in the maximum in-degree, our results show that _testing_ is a relatively more manageable task. In particular, it requires exponentially less independence tests in graphs featuring high in-degrees and small clique sizes.
Chat is not available.