Skip to yearly menu bar Skip to main content


Poster

Sum-max Submodular Bandits

Stephen Pasteris · Alberto Rumi · Fabio Vitale · Nicolò Cesa-Bianchi

MR1 & MR2 - Number 5

Abstract: Many online decision-making problems correspond to maximizing a sequence of submodular functions.In this work, we introduce sum-max functions, a subclass of monotone submodular functions capturing several interesting problems, including best-of-K-bandits, combinatorial bandits, and the bandit versions on M-medians and hitting sets.We show that all functions in this class satisfy a key property that we call pseudo-concavity.This allows us to prove (11e)-regret bounds for bandit feedback in the nonstochastic setting of the order of MKT (ignoring log factors), where T is the time horizon and M is a cardinality constraint.This bound, attained by a simple and efficient algorithm, significantly improves on the O~(T2/3) regret bound for online monotone submodular maximization with bandit feedback.We also extend our results to a bandit version of the facility location problem.

Chat is not available.