Skip to yearly menu bar Skip to main content


Equivalence Testing: The Power of Bounded Adaptivity

Diptarka Chakraborty · Sourav Chakraborty · GUNJAN KUMAR · Kuldeep Meel

MR1 & MR2 - Number 160
[ ]
Sat 4 May 6 a.m. PDT — 8:30 a.m. PDT

Abstract: Equivalence testing, a fundamental problem in the field of distribution testing,seeks to infer if two unknown distributions on $[n]$ are the same or far apart in thetotal variation distance. Conditional sampling has emerged as a powerful querymodel and has been investigated by theoreticians and practitioners alike, leading to the design of optimal algorithms albeit in a sequential setting (also referred to as adaptive tester). Given the profound impact of parallel computing over the past decades, there has been a strong desire to design algorithms that enable high parallelization. Despite significant algorithmic advancements over the last decade, parallelizable techniques (also termed non-adaptive testers) have $\tilde{O}(\log^{12}n)$ query complexity, a prohibitively large complexity to be of practical usage. Therefore, the primary challenge is whether it is possible to design algorithms that enable high parallelization while achieving efficient query complexity.Our work provides an affirmative answer to the aforementioned challenge: we present a highly parallelizable tester with a query complexity of $\tilde{O}(\log n)$, achieved through a single round of adaptivity, marking a significant stride towardsharmonizing parallelizability and efficiency in equivalence testing.

Live content is unavailable. Log in and register to view live content