Skip to yearly menu bar Skip to main content


Quantifying intrinsic causal contributions via structure preserving interventions

Dominik Janzing · Patrick Bloebaum · Atalanti Mastakouri · Philipp M. Faller · Lenon Minorics · Kailash Budhathoki

MR1 & MR2 - Number 1
[ ]
Sat 4 May 6 a.m. PDT — 8:30 a.m. PDT


We propose a notion of causal influence that describes the intrinsic' part of the contribution of a node on a target node in a DAG. By recursively writing each node as a function of the upstream noise terms, we separate the intrinsic information added by each node from the one obtained from its ancestors. To interpret the intrinsic information as a causal contribution, we considerstructure-preserving interventions' that randomize each node in a way that mimics the usual dependence on the parents and does not perturb the observed joint distribution. To get a measure that is invariant across arbitrary orderings of nodes we use Shapley based symmetrization and show that it reduces in the linear case to simple ANOVA after resolving the target node into noise variables. We describe our contribution analysis for variance and entropy, but contributions for other target metrics can be defined analogously.

Live content is unavailable. Log in and register to view live content