Skip to yearly menu bar Skip to main content


Poster

On the Privacy of Selection Mechanisms with Gaussian Noise

Jonathan Lebensold · Doina Precup · Borja Balle

MR1 & MR2 - Number 88
[ ] [ Project Page ]
Thu 2 May 8 a.m. PDT — 8:30 a.m. PDT

Abstract:

Report Noisy Max and Above Threshold are two classical differentially private (DP) selection mechanisms. Their output is obtained by adding noise to a sequence of low-sensitivity queries and reporting the identity of the query whose (noisy) answer satisfies a certain condition. Pure DP guarantees for these mechanisms are easy to obtain when Laplace noise is added to the queries. On the other hand, when instantiated using Gaussian noise, standard analyses only yield approximate DP guarantees despite the fact that the outputs of these mechanisms lie in a discrete space. In this work, we revisit the analysis of Report Noisy Max and Above Threshold with Gaussian noise and show that, under the additional assumption that the underlying queries are bounded, it is possible to provide pure ex-ante DP bounds for Report Noisy Max and pure ex-post DP bounds for Above Threshold. The resulting bounds are tight and depend on closed-form expressions that can be numerically evaluated using standard methods. Empirically we find these lead to tighter privacy accounting in the high privacy, low data regime. Further, we propose a simple privacy filter for composing pure ex-post DP guarantees, and use it to derive a fully adaptive Gaussian Sparse Vector Technique mechanism. Finally, we provide experiments on mobility and energy consumption datasets demonstrating that our Sparse Vector Technique is practically competitive with previous approaches and requires less hyper-parameter tuning.

Live content is unavailable. Log in and register to view live content