Skip to yearly menu bar Skip to main content


Poster

Simulation-Free Schrödinger Bridges via Score and Flow Matching

Alexander Tong · Nikolay Malkin · Kilian Fatras · Lazar Atanackovic · Yanlei Zhang · Guillaume Huguet · Guy Wolf · Yoshua Bengio

MR1 & MR2 - Number 115
[ ]
Thu 2 May 8 a.m. PDT — 8:30 a.m. PDT

Abstract: We present simulation-free score and flow matching ([SF]$^2$M), a simulation-free objective for inferring stochastic dynamics given unpaired samples drawn from arbitrary source and target distributions. Our method generalizes both the score-matching loss used in the training of diffusion models and the recently proposed flow matching loss used in the training of continuous normalizing flows. [SF]$^2$M interprets continuous-time stochastic generative modeling as a Schrödinger bridge problem. It relies on static entropy-regularized optimal transport, or a minibatch approximation, to efficiently learn the SB without simulating the learned stochastic process. We find that [SF]$^2$M is more efficient and gives more accurate solutions to the SB problem than simulation-based methods from prior work. Finally, we apply [SF]$^2$M to the problem of learning cell dynamics from snapshot data. Notably, [SF]$^2$M is the first method to accurately model cell dynamics in high dimensions and can recover known gene regulatory networks from simulated data. Our code is available in the TorchCFM package at \url{https://github.com/atong01/conditional-flow-matching}.

Live content is unavailable. Log in and register to view live content