Skip to yearly menu bar Skip to main content


Poster

Learning-Based Algorithms for Graph Searching Problems

Adela DePavia · Erasmo Tani · Ali Vakilian

MR1 & MR2 - Number 169
Student Paper Highlight Student Paper Highlight
[ ]
[ Poster
Fri 3 May 8 a.m. PDT — 8:30 a.m. PDT
 
Oral presentation: Oral: Optimization
Thu 2 May 5 a.m. PDT — 6:15 a.m. PDT

Abstract:

We consider the problem of graph searching with prediction recently introduced by Banerjee et al. (2023). In this problem, an agent starting at some vertex r has to traverse a (potentially unknown) graph G to find a hidden goal node g while minimizing the total distance traveled. We study a setting in which at any node v, the agent receives a noisy estimate of the distance from v to g. We design algorithms for this search task on unknown graphs. We establish the first formal guarantees on unknown weighted graphs and provide lower bounds showing that the algorithms we propose have optimal or nearly-optimal dependence on the prediction error. Further, we perform numerical experiments demonstrating that in addition to being robust to adversarial error, our algorithms perform well in typical instances in which the error is stochastic. Finally, we provide simpler performance bounds on the algorithms of Banerjee et al. (2023) for the case of searching on a known graph and establish new lower bounds for this setting.

Chat is not available.