Poster
Some Targets Are Harder to Identify than Others: Quantifying the Target-dependent Membership Leakage
Achraf Azize · Debabrota Basu
Hall A-E 1
Sun 4 May midnight PDT — 1 a.m. PDT
In a Membership Inference (MI) game, an attacker tries to infer whether a target point was included or not in the input of an algorithm. Existing works show that some target points are easier to identify, while others are harder. This paper explains the target-dependent hardness of membership attacks by studying the powers of the optimal attacks in a fixed-target MI game. We characterise the optimal advantage and trade-off functions of attacks against the empirical mean in terms of the Mahalanobis distance between the target point and the data-generating distribution. We further derive the impacts of two privacy defences, i.e. adding Gaussian noise and sub-sampling, and that of target misspecification on optimal attacks. As by-products of our novel analysis of the Likelihood Ratio (LR) test, we provide a new covariance attack which generalises and improves the scalar product attack. Also, we propose a new optimal canary-choosing strategy for auditing privacy in the white-box federated learning setting. Our experiments validate that the Mahalanobis score explains the hardness of fixed-target MI games.
Live content is unavailable. Log in and register to view live content