Causal Effect Identification with Context-specific Independence Relations of Control Variables

Ehsan Mokhtarian · Fateme Jamshidi · Jalal Etesami · Negar Kiyavash

[ Abstract ]
Tue 29 Mar 1 a.m. PDT — 2:30 a.m. PDT


We study the problem of causal effect identification from observational distribution given the causal graph and some context-specific independence (CSI) relations. It was recently shown that this problem is NP-hard, and while a sound algorithm to learn the causal effects is proposed in Tikka et al. (2019), no complete algorithm for the task exists. In this work, we propose a sound and complete algorithm for the setting when the CSI relations are limited to observed nodes with no parents in the causal graph. One limitation of the state of the art in terms of its applicability is that the CSI relations among all variables, even unobserved ones, must be given (as opposed to learned). Instead, We introduce a set of graphical constraints under which the CSI relations can be learned from mere observational distribution. This expands the set of identifiable causal effects beyond the state of the art.

Chat is not available.