Skip to yearly menu bar Skip to main content


GraphAdaMix: Enhancing Node Representations with Graph Adaptive Mixtures

Da Sun Handason Tam · Siyue Xie · Wing Cheong Lau


Graph Neural Networks (GNNs) are the current state-of-the-art models in learning node representations for many predictive tasks on graphs. Typically, GNNs reuses the same set of model parameters across all nodes in the graph to improve the training efficiency and exploit the translationally-invariant properties in many datasets. However, the parameter sharing scheme prevents GNNs from distinguishing two nodes having the same local structure and that the translation invariance property may not exhibit in real-world graphs. In this paper, we present Graph Adaptive Mixtures (GraphAdaMix), a novel approach for learning node representations in a graph by introducing multiple independent GNN models and a trainable mixture distribution for each node. GraphAdaMix can adapt to tasks with different settings. Specifically, for semi-supervised tasks, we optimize GraphAdaMix using the Expectation-Maximization (EM) algorithm, while in unsupervised settings, GraphAdaMix is trained following the paradigm of contrastive learning. We evaluate GraphAdaMix on ten benchmark datasets with extensive experiments. GraphAdaMix is demonstrated to consistently boost state-of-the-art GNN variants in semi-supervised and unsupervised node classification tasks. The code of GraphAdaMix is available online.

Chat is not available.