The Tree Loss: Improving Generalization with Many Classes

Yujie Wang · Mike Izbicki


Multiclass classification problems often have many semantically similar classes. For example, 90 of ImageNet’s 1000 classes are for different breeds of dog. We should expect that these semantically similar classes will have similar parameter vectors, but the standard cross entropy loss does not enforce this constraint.We introduce the tree loss as a drop-in replacement for the cross entropy loss. The tree loss re-parameterizes the parameter matrix in order to guarantee that semantically similar classes will have similar parameter vectors. Using simple properties of stochastic gradient descent, we show that the tree loss’s generalization error is asymptotically better than the cross entropy loss’s. We then validate these theoretical results on synthetic data, image data (CIFAR100, ImageNet), and text data (Twitter).

Chat is not available.