Convergent Working Set Algorithm for Lasso with Non-Convex Sparse Regularizers

Alain Rakotomamonjy · RĂ©mi Flamary · Joseph Salmon · Gilles Gasso

[ Abstract ]
Wed 30 Mar 3:30 a.m. PDT — 5 a.m. PDT


Non-convex sparse regularizers are common tools for learning with high-dimensional data. For accelerating convergence for Lasso problem involving thoseregularizers, a working set strategy addresses the optimization problem through an iterative algorithm by gradually incrementing the number of variables to optimize until the identification of the solution support. We propose in this paper the first Lasso working set algorithm for non-convex sparse regularizers with convergence guarantees. The algorithm, named FireWorks, is based on a non-convex reformulation of a recent duality-based approach and leverages on the geometry of the residuals. We provide theoretical guarantees showing that convergence is preserved even when the inner solver is inexact, under sufficient decay of the error across iterations. Experimental results demonstrate strong computational gain when using our working set strategy compared to full problem solvers for both block-coordinate descent or a proximal gradient solver.

Chat is not available.