Predicting the impact of treatments over time with uncertainty aware neural differential equations.

Edward De Brouwer · Javier Gonzalez · Stephanie Hyland

[ Abstract ]
Tue 29 Mar 1 a.m. PDT — 2:30 a.m. PDT


Predicting the impact of treatments from ob- servational data only still represents a major challenge despite recent significant advances in time series modeling. Treatment assignments are usually correlated with the predictors of the response, resulting in a lack of data support for counterfactual predictions and therefore in poor quality estimates. Developments in causal inference have lead to methods addressing this confounding by requiring a minimum level of overlap. However, overlap is difficult to assess and usually not satisfied in practice. In this work, we propose Counterfactual ODE (CF-ODE), a novel method to predict the impact of treatments continuously over time using Neural Ordinary Differential Equations equipped with uncertainty estimates. This allows to specifically assess which treatment outcomes can be reliably predicted. We demonstrate over several longitudinal datasets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.

Chat is not available.