Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Completion

Tian Tong · Cong Ma · Ashley Prater-Bennette · Erin Tripp · Yuejie Chi

Abstract: Tensors, which provide a powerful and flexible model for representing multi-attribute data and multi-way interactions, play an indispensable role in modern data science across various fields in science and engineering. A fundamental task is tensor completion, which aims to faithfully recover the tensor from a small subset of its entries in a statistically and computationally efficient manner. Harnessing the low-rank structure of tensors in the Tucker decomposition, this paper develops a scaled gradient descent (ScaledGD) algorithm to directly recover the tensor factors with tailored spectral initializations, and shows that it provably converges at a linear rate independent of the condition number of the ground truth tensor for tensor completion as soon as the sample size is above the order of $n^{3/2}$ ignoring other parameter dependencies, where $n$ is the dimension of the tensor. To the best of our knowledge, ScaledGD is the first algorithm that achieves near-optimal statistical and computational complexities simultaneously for low-rank tensor completion with the Tucker decomposition. Our algorithm highlights the power of appropriate preconditioning in accelerating nonconvex statistical estimation, where the iteration-varying preconditioners promote desirable invariance properties of the trajectory with respect to the underlying symmetry in low-rank tensor factorization.

Chat is not available.