Poster
Conditionally Gaussian PAC-Bayes
Eugenio Clerico · George Deligiannidis · Arnaud Doucet
Virtual
Abstract:
Recent studies have empirically investigated different methods to train stochastic neural networks on a classification task by optimising a PAC-Bayesian bound via stochastic gradient descent. Most of these procedures need to replace the misclassification error with a surrogate loss, leading to a mismatch between the optimisation objective and the actual generalisation bound. The present paper proposes a novel training algorithm that optimises the PAC-Bayesian bound, without relying on any surrogate loss. Empirical results show that this approach outperforms currently available PAC-Bayesian training methods.
Chat is not available.