Skip to yearly menu bar Skip to main content


Oral

Nonparametric Relational Models with Superrectangulation

Masahiro Nakano · Ryo Nishikimi · Yasuhiro Fujiwara · Akisato Kimura · Takeshi Yamada · Naonori Ueda

Abstract:

This paper addresses the question, ''What is the smallest object that contains all rectangular partitions with n or fewer blocks?'' and shows its application to relational data analysis using a new strategy we call super Bayes as an alternative to Bayesian nonparametric (BNP) methods. Conventionally, standard BNP methods have combined the Aldous-Hoover-Kallenberg representation with parsimonious stochastic processes on rectangular partitioning to construct BNP relational models. As a result, conventional methods face the great difficulty of searching for a parsimonious random rectangular partition that fits the observed data well in Bayesian inference. As a way to essentially avoid such a problem, we propose a strategy to combine an extremely redundant rectangular partition as a deterministic (non-probabilistic) object. Specifically, we introduce a special kind of rectangular partitioning, which we call superrectangulation, that contains all possible rectangular partitions. Delightfully, this strategy completely eliminates the difficult task of searching around for random rectangular partitions, since the superrectangulation is deterministically fixed in inference. Experiments on predictive performance in relational data analysis show that the super Bayesian model provides a more stable analysis than the existing BNP models, which are less likely to be trapped in bad local optima.

Chat is not available.