Skip to yearly menu bar Skip to main content


Poster

On double-descent in uncertainty quantification in overparametrized models

Lucas CLARTE · Bruno Loureiro · Florent Krzakala · Lenka Zdeborova

Auditorium 1 Foyer 92

Abstract:

Uncertainty quantification is a central challenge in reliable and trustworthy machine learning. Naive measures such as last-layer scores are well-known to yield overconfident estimates in the context of overparametrized neural networks. Several methods, ranging from temperature scaling to different Bayesian treatments of neural networks, have been proposed to mitigate overconfidence, most often supported by the numerical observation that they yield better calibrated uncertainty measures. In this work, we provide a sharp comparison between popular uncertainty measures for binary classification in a mathematically tractable model for overparametrized neural networks: the random features model. We discuss a trade-off between classification accuracy and calibration, unveiling a double descent behavior in the calibration curve of optimally regularised estimators as a function of overparametrization. This is in contrast with the empirical Bayes method, which we show to be well calibrated in our setting despite the higher generalization error and overparametrization.

Live content is unavailable. Log in and register to view live content