Poster
Transport Reversible Jump Proposals
Laurence Davies · Robert Salomone · Matthew Sutton · Chris Drovandi
Auditorium 1 Foyer 145
Reversible jump Markov chain Monte Carlo (RJMCMC) proposals that achieve reasonable acceptance rates and mixing are notoriously difficult to design in most applications. Inspired by recent advances in deep neural network-based normalizing flows and density estimation, we demonstrate an approach to enhance the efficiency of RJMCMC sampling by performing transdimensional jumps involving reference distributions. In contrast to other RJMCMC proposals, the proposed method is the first to apply a non-linear transport-based approach to construct efficient proposals between models with complicated dependency structures. It is shown that, in the setting where exact transports are used, our RJMCMC proposals have the desirable property that the acceptance probability depends only on the model probabilities. Numerical experiments demonstrate the efficacy of the approach.
Live content is unavailable. Log in and register to view live content