Poster
Mode-Seeking Divergences: Theory and Applications to GANs
Cheuk Ting Li · Farzan Farnia
Auditorium 1 Foyer 99
Generative adversarial networks (GANs) represent a game between two neural network machines designed to learn the distribution of data. It is commonly observed that different GAN formulations and divergence/distance measures used could lead to considerably different performance results, especially when the data distribution is multi-modal. In this work, we give a theoretical characterization of the mode-seeking behavior of general f-divergences and Wasserstein distances, and prove a performance guarantee for the setting where the underlying model is a mixture of multiple symmetric quasiconcave distributions. This can help us understand the trade-off between the quality and diversity of the trained GANs' output samples. Our theoretical results show the mode-seeking nature of the Jensen-Shannon (JS) divergence over standard KL-divergence and Wasserstein distance measures. We subsequently demonstrate that a hybrid of JS-divergence and Wasserstein distance measures minimized by Lipschitz GANs mimics the mode-seeking behavior of the JS-divergence. We present numerical results showing the mode-seeking nature of the JS-divergence and its hybrid with the Wasserstein distance while highlighting the mode-covering properties of KL-divergence and Wasserstein distance measures. Our numerical experiments indicate the different behavior of several standard GAN formulations in application to benchmark Gaussian mixture and image datasets.
Live content is unavailable. Log in and register to view live content