Skip to yearly menu bar Skip to main content


Poster

A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces

Charline Le Lan · Joshua Greaves · Jesse Farebrother · Mark Rowland · Fabian Pedregosa · Rishabh Agarwal · Marc G. Bellemare

Auditorium 1 Foyer 71

Abstract: Many machine learning problems encode their data as a matrix with a possibly very large number of rows and columns.In several applications like neuroscience, image compression or deep reinforcement learning, the principal subspace of such a matrix provides a useful, low-dimensional representation of individual data.Here, we are interested in determining the $d$-dimensional principal subspace of a given matrix from sample entries, i.e. from small random submatrices.Although a number of sample-based methods exist for this problem (e.g. Oja's rule \citep{oja1982simplified}), these assume access to full columns of the matrix or particular matrix structure such as symmetry and cannot be combined as-is with neural networks \citep{baldi1989neural}. In this paper, we derive an algorithm that learns a principal subspace from sample entries, can be applied when the approximate subspace is represented by a neural network, and hence can be scaled to datasets with an effectively infinite number of rows and columns.Our method consists in defining a loss function whose minimizer is the desired principal subspace, and constructing a gradient estimate of this loss whose bias can be controlled. We complement our theoretical analysis with a series of experiments on synthetic matrices, the MNIST dataset \citep{lecun2010mnist} and the reinforcement learning domain PuddleWorld \citep{sutton1995generalization} demonstrating the usefulness of our approach.

Live content is unavailable. Log in and register to view live content