Poster
Dimensionality Collapse: Optimal Measurement Selection for Low-Error Infinite-Horizon Forecasting
Helmuth Naumer · Farzad Kamalabadi
Auditorium 1 Foyer 64
This work introduces a method to select linear functional measurements of a vector-valued time series optimized for forecasting distant time-horizons. By formulating and solving the problem of sequential linear measurement design as an infinite-horizon problem with the time-averaged trace of the Cramér-Rao lower bound (CRLB) for forecasting as the cost, the most informative data can be collected irrespective of the eventual forecasting algorithm. By introducing theoretical results regarding measurements under additive noise from natural exponential families, we construct an equivalent problem from which a local dimensionality reduction can be derived. This alternative formulation is based on the future collapse of dimensionality inherent in the limiting behavior of many differential equations and can be directly observed in the low-rank structure of the CRLB for forecasting. Implementations of both an approximate dynamic programming formulation and the proposed alternative are illustrated using an extended Kalman filter for state estimation, with results on simulated systems with limit cycles and chaotic behavior demonstrating a linear improvement in the CRLB as a function of the number of collapsing dimensions of the system.
Live content is unavailable. Log in and register to view live content