Skip to yearly menu bar Skip to main content


Poster

Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation

Yaxuan Zhu · Jianwen Xie · Ping Li

Auditorium 1 Foyer 137

Abstract:

We propose the NeRF-LEBM, a likelihoodbased top-down 3D-aware 2D image generative model that incorporates 3D representation via Neural Radiance Fields (NeRF) and 2D imaging process via differentiable volume rendering. The model represents an image as a rendering process from 3D object to 2D image and is conditioned on some latent variables that account for object characteristics and are assumed to follow informative trainable energy-based prior models. We propose two likelihood-based learning frameworks to train the NeRF-LEBM: (i) maximum likelihood estimation with Markov chain Monte Carlo-based inference and (ii) variational inference with the reparameterization trick. We study our modelsin the scenarios with both known and unknown camera poses. Experiments on several benchmark datasets demonstrate that the NeRF-LEBM can infer 3D object structures from 2D images, generate 2D images with novel views and objects, learn from incomplete 2D images, and learn from 2D images with known or unknown camera poses.

Live content is unavailable. Log in and register to view live content