Poster
AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization
Feihu Huang · Xidong Wu · Zhengmian Hu
Auditorium 1 Foyer 118
[
Abstract
]
Abstract:
In the paper, we propose a class of faster adaptive Gradient Descent Ascent (GDA) methods for solving the nonconvex-strongly-concave minimax problems by using the unified adaptive matrices, which include almost all existing coordinate-wise and global adaptive learning rates. In particular, we provide an effective convergence analysis framework for our adaptive GDA methods. Specifically, we propose a fast Adaptive Gradient Descent Ascent (AdaGDA) method based on the basic momentum technique, which reaches a lower gradient complexity of $\tilde{O}(\kappa^4\epsilon^{-4})$ for finding an $\epsilon$-stationary point without large batches, which improves the existing results of the adaptive GDA methods by a factor of $O(\sqrt{\kappa})$. Moreover, we propose an accelerated version of AdaGDA (VR-AdaGDA) method based on the momentum-based variance reduced technique, which achieves a lower gradient complexity of $\tilde{O}(\kappa^{4.5}\epsilon^{-3})$ for finding an $\epsilon$-stationary point without large batches, which improves the existing results of the adaptive GDA methods by a factor of $O(\epsilon^{-1})$. Moreover, we prove that our VR-AdaGDA method can reach the best known gradient complexity of $\tilde{O}(\kappa^{3}\epsilon^{-3})$ with the mini-batch size $O(\kappa^3)$. The experiments on policy evaluation and fair classifier learning tasks are conducted to verify the efficiency of our new algorithms.
Live content is unavailable. Log in and register to view live content