Stochastic Rounding for LLM Training: Theory and Practice

Kaan Ozkara^{1,2}, Tao Yu¹, Youngsuk Park¹

¹Amazon Web Services, ²UCLA

amazon science

TIDR

- We propose **BF16+SR strategy** for **pre-training** of LLMs that keeps every tensor including model weights, optimizer states, and gradients in BF16 precision.
- Empirical results from pre-training models with up to **6.7B parameters** shows that compared to state of the art (BF16-FP32) mixed precision (MP) strategies, our method achieves **better validation perplexity**, up to **1.54× higher throughput**, and **30% less memory usage**.
- The key techniques that we employed to enable full BF16 training is to **share randomness** for model updates, and using a **higher learning rate** while training with SR.
- Theoretically, we show how SR results in an **implicit regularization** and quantization aware training. We find that training with SR results in **better convergence** properties in terms of error induced by quantization compared to MP training.
- Our theoretical results emphasize the importance of employing a high learning rate for a successful SR training, and SR training is **robust to training with high learning rates**.

Rounding Modes

Nearest Rounding (NR)
$$Q(x) := \mathrm{sign}(x) \cdot \Delta_x \cdot \Big\lfloor \frac{x}{\Delta_x} + \frac{1}{2} \Big\rfloor,$$
 • Biased estimate

Default rounding mode in FP operations

Stochastic Rounding (SR) $Q_{SR}(x) := \begin{cases} \lceil x \rceil, & \text{w.p. } \frac{x - \lfloor x \rfloor}{\Delta_x} \\ \lfloor x \rfloor, & \text{w.p. } \frac{\lceil x \rceil - x}{\Delta_x} \end{cases}.$

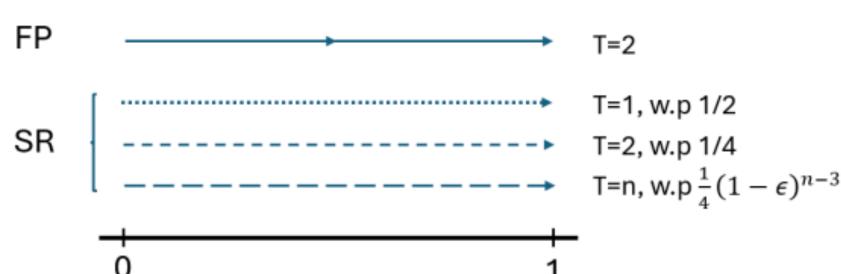
- Biased estimate
 Optimal worst case error
 Unbiased
 Lower error
 - Lower error accumulation with consecutive operations
 Lower probabilistic error bounds

SR gives true update in expectation- prevents stagnation

Assume $x_{t+1} = x_t + u$, where $u \ll x_t$, $Q(x_t + u) = x_t$, $E[Q_{SR}(x_t + u)] = x_t + u$. Stagnation happens with deterministic rounding.

SR needs high learning rate

Previous works [1,2] also considered BF16 training with SR but reported MP training is superior in terms of ppl. For SR training, there is a risk of slow convergence when learning rate is not high enough. A toy example:



 $x_0 = 0, x_{target} = 1, u_1 = u_2 = \frac{1}{2}$ $u_{t>2} = \epsilon$ Then $T_{Fp} = 2, E[T_{SR}] > 2 \text{ if } \epsilon < \frac{1}{2}, E[T_{SR}] \rightarrow \infty \text{ when } \epsilon \rightarrow 0.$

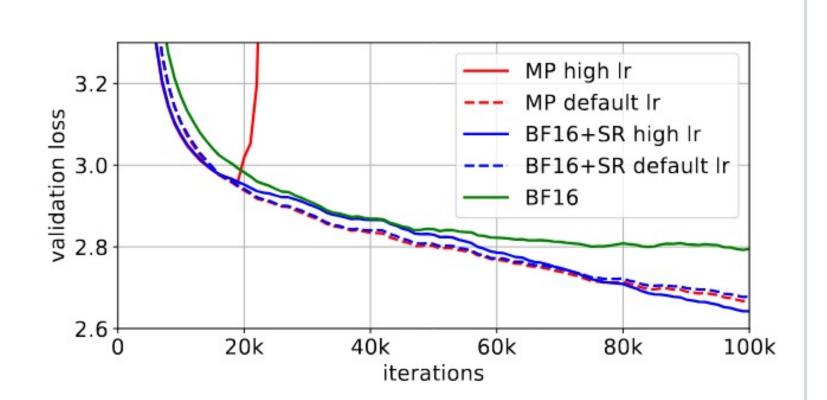
We will also see this effect in the upcoming theory results.

SR is robust to high learning rate

Correlation among consecutive gradients is considered as a culprit of divergence under high learning rates [3]. We can show that **stochasticity due to SR can reduce this correlation** resulting training more robust to high learning rates.

Our Contribution:

* denotes first shown in this work.



BF16 Adam with SR and shared randomness

2: for
$$t=1$$
 to T do

BF16+SR is Mfor $m=1$ to M do

BF16 4: FP32 $g_t \leftarrow \nabla f(x_t)$ ## reduced gradient

BF16 5: FP32 $m_{t+1} \leftarrow \beta_1 \cdot m_t + (1-\beta_1) \cdot g_t$

BF16 6: FP32 $v_{t+1} \leftarrow \beta_2 \cdot v_t + (1-\beta_2) \cdot g_t^2$

7: $\hat{m}_{t+1} \leftarrow \frac{m_{t+1}}{1-(\beta_1)^t}$

8: $\hat{v}_{t+1} \leftarrow \sqrt{\frac{v_{t+1}}{1-(\beta_2)^t}}$

9: $r \leftarrow r_t^{(opt)}$ ## share the same random state across ranks for optimizer

BF1610FP32 $x_{t+1} \leftarrow Q_{SR} \left(x_t - \left(\alpha_t \cdot \frac{\hat{m}_{t+1}}{\sqrt{\hat{v}_{t+1}+\epsilon}} + \alpha_t \cdot \lambda \cdot x_t \right) \right)$

$r_t^{(opt)}$ is updated during SR

11: $r \leftarrow r_t^m$ ## get current random state

- In our BF16+SR strategy every variable is in BF16.
- For mixed precision every variable in FP32; only forward and backward operations are in BF16.
- Shared randomness for the optimizer that prevents drift of replicated model/model parts (line 10).

Implicit Regularization

$$F_{SR}(x) := F(x) + \frac{\alpha}{4} \|\nabla F(x)\|^2 + \underbrace{\frac{\alpha}{4} \mathbb{E}[\|\xi_\alpha(x)\|^2]}_{\text{loss function}} + \underbrace{\frac{\alpha}{4} \mathbb{E}[\|\xi_\alpha(x)\|^2]}_{\text{due to GD}} + \underbrace{\frac{\alpha}{4} \mathbb{E}[\|\xi_\alpha(x)\|^2]}_{\text{loss function}} + \underbrace{\frac{\alpha}{4} \mathbb{E}[\|\xi_\alpha(x)\|^2]}_{\text{due to SR}}$$

SR introduces quantization penalty and results in implicit quantization aware training

Convergence

Theorem 2 (No momentum, $\beta_1 = 0$). Assuming access to full precision gradients, and learning rate $\alpha_t = \alpha \sqrt{\frac{1-\beta_2^t}{1-\beta_2}}$ with $\alpha > 0$, when SR is used for the update step to obtain quantized weights, we have

$$G_{T} \leq \frac{A}{T} + \frac{2Rd}{T} \left(\frac{2R}{\sqrt{1 - \beta_{2}}} + \frac{\alpha L}{1 - \beta_{2}} \right) \left(T \ln \left(\frac{1}{\beta_{2}} \right) \right)$$

$$+ \underbrace{\frac{Rd\Delta L}{T\sqrt{1 - \beta_{2}}} \left(\sqrt{T \ln \left(1 + \frac{R^{2}}{\epsilon (1 - \beta_{2})} \right)} + T \sqrt{\ln \left(\frac{1}{\beta_{2}} \right)} \right)}_{quantization\ error}$$

Here $\Delta = \max_i \Delta_{x_i}$, $G_T = \frac{1}{T} \sum_{t=1}^T \|\nabla F(x_t)\|^2$ and A is a constant that depends on d, R, β_2, α .

Theorem 3. Under the same setting in Theorem 2, Adam with NR gives the following convergence bound

$$G_{T} \leq \frac{A}{T} + \frac{2Rd}{T} \left(\frac{2R}{\sqrt{1 - \beta_{2}}} + \frac{\alpha L}{1 - \beta_{2}} \right) \left(T \ln \left(\frac{1}{\beta_{2}} \right) \right)$$

$$+ \frac{2Rd\Delta L}{T\sqrt{1 - \beta_{2}}} \left(\sqrt{T \ln \left(1 + \frac{R^{2}}{\epsilon(1 - \beta_{2})} \right)} + T \sqrt{\ln \left(\frac{1}{\beta_{2}} \right)} \right)$$

$$+ \frac{\sqrt{1 - \beta_{2}} d(R\Delta + L\Delta^{2})}{\alpha}.$$

Due to biasedness, Nearest rounding results in a larger error bound due to (i) multiplicative term of ×2 in the second line in Theorem 3 and (ii) additional error term in third line.

Experiments

Baselines:

- O1 level mixed precision (torch.amp),
- O2 level mixed precision (Micikevicius et al., 2018),
- BF16 training (with default nearest rounding mode).
- Models:
- GPT-2(350M, 770M) on ~50B tokens
- GPT-Neo(1.3B,2.7B,6.7B) on 40B,20Btokens

Table 2 Default, tuned for mixed precision, tuned

for SR learning rates ($\times 1e-4$); and whether mixed precision training converges with SR's learning rate. Note SR converges in all cases.

Learning rate tuned individually for each method $\frac{\text{rate. Note SR converges in all cases.}}{\text{Model size Default MP SR MP converges}}$

-	ide. Note Sit converges in all cases.								
	Model size	Default	MP	SR	MP converges				
	350M	3	3	7	×				
	770M	2	2	7	×				
	1.3B	2	4	4	\checkmark				
	$2.7\mathrm{B}$	1.6	4	5	\checkmark				
	$6.7\mathrm{B}$	1.2	3.6	5.5	×				

Validation PPL

Table 1 Validation perplexity of competing methods for GPT models.								
Method	GPT-2(350M)	GPT-2(770M)	GPT-Neo(1.3B)	GPT-Neo(2.7B)	GPT-Neo(6.7B)			
BF16+SR (ours)	14.07	12.63	10.46	10.22	10.05			
(BF16,FP32) MP	14.45	12.83	10.48	10.31	10.11			
BF16	16.38	15.28	11.81	11.67	11.64			

Throughput

Table 3 Throughput (sequences/second) of SR compared to O1 level mixed precision training (torch.amp).						Table 5 Throughput of SR compared to O2 level mixed			
Method GPT-2(350M) GPT-2(770M) GPT-Neo(1.3B) GPT-Neo(2.7B) GPT-Neo(6.7B)						precision training evaluated in Megatron-LM.			
BF16+SR (ours)	()	254	125	7		Method \GPT-Neo size	1.3B	$2.7\mathrm{B}$	$6.7\mathrm{B}$
\ /	501	_		84	43	BF16+SR (ours)	135	75	32
(BF16,FP32) MP	469	224	105	57	28	(BF16,FP32) MP	129	71	31
Gain	$1.07 \times$	$1.14 \times$	$1.19 \times$	$1.47 \times$	$1.54 \times$	Gain	$1.05\times$	$1.06 \times$	$1.03 \times$
Memory	,								

Memory

Table 4 Memory consumption (GB) per node; SR compared to O1 level mixed precision training (torch.amp).								
Method	GPT-2(350M)	GPT-2(770M)	GPT-Neo(1.3B)	GPT-Neo(2.7B)	$\overline{\mathrm{GPT}\text{-}\mathrm{Neo}(6.7\mathrm{B})}$			
BF16+SR (ours)	186	208	184	171	184			
(BF16,FP32) MP	234	298	206	197	232			
Tensor parallelism	1	1	8	8	8			
Memory savings	21%	30%	11%	13%	21%			

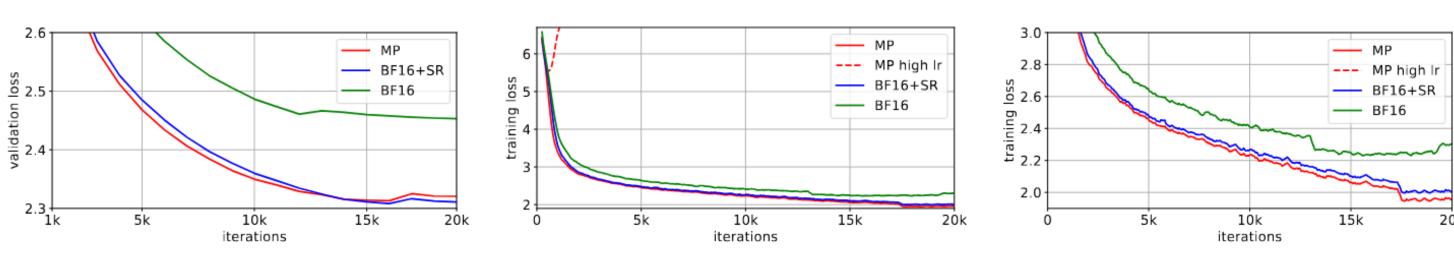


Figure 3: Validation (left) and training losses (middle, right) for training GPT-Neo (6.7B).

SR results in better validation perplexity despite lower wall clock time and memory usage.