

Black-Box Uniform Stability for Non-Euclidean Empirical Risk Minimization

David Martínez Rubio² Patrick Rebeschini¹ Simon Vary¹

¹Dept. of Statistic, University of Oxford ²Signal Theory and Communications Dept., Carlos III University of Madrid

What is this poster about?

An **black-box** reduction method that turns a first-order **optimization** algorithm for smooth convex losses w.r.t. p-norms into a uniformly stable learning algorithm.

- Achieves optimal statistical risk bound
- Regularity of the loss w.r.t. non-Euclidean ℓ_p -norm
- Improves over ℓ_2 -regularization in high-dimensional setting
- Generalization (via stability) of uniformly convex regularizers

Learning in Non-Euclidean Geometry

Setup: Loss $\ell: \mathcal{B}_p(R) \times \mathcal{Z} \to \mathbb{R}$ convex smooth w.r.t. $\|\cdot\|_p$, where $\mathcal{B}_p(R) \coloneqq \{x \in \mathcal{B}_p(R) : x \in \mathcal{B}_p(R) : x \in \mathcal{B}_p(R) = \{x \in \mathcal{B}_p(R) : x \in \mathcal{B}_p(R) : x \in \mathcal{B}_p(R) : x \in \mathcal{B}_p(R) = \{x \in \mathcal{B}_p(R) : x \in \mathcal{B}_p(R)$ $\mathbb{R}^d: ||x||_p \leq R$, distribution $P \in \mathcal{P}$ supported on \mathcal{Z} , find

$$\tilde{x} \in \operatorname*{arg\,min} f(x) \coloneqq \mathbb{E}_{z \sim P} \left[\ell(x, z) \right],$$
 $x \in \mathcal{B}_p(R)$

given i.i.d. samples $S = \{z_i\}_{i=1}^N \in \mathcal{Z}$ from P, empirical risk $f_S(x) = \frac{1}{N} \sum_{i=1}^N \ell(x, z_i)$.

Decomposition of the expected excess risk of estimator $\hat{x} = \mathcal{A}(S)$:

$$\mathbb{E}_{S}[f(\hat{x}) - f(\tilde{x})] = \mathbb{E}_{S}[f(\hat{x}) - f_{S}(\hat{x})] + \mathbb{E}_{S}[f_{S}(\hat{x}) - f_{S}(\tilde{x})]$$

$$\leq \mathbb{E}_{S}[f(\hat{x}) - f_{S}(\hat{x})] + \mathbb{E}_{S}[f_{S}(\hat{x}) - f_{S}(x^{*})],$$
Statistics
Optimization

using $\mathbb{E}_S[f_S(x)] = f(x)$ and $x^* = \arg\min_{x \in \mathcal{B}_p(R)} f_S(x)$.

Open Problem

Question: Given an optimization alg. $(x_t)_t$ that achieves optimal time complexity

$$f(x_t) - \inf_{x \in \mathcal{B}} f(x) \sim \inf_{\substack{(x_t)_t \text{ first-order solvers}}} \sup_f [f(x_t) - \inf_{x \in \mathcal{B}} f(x)],$$

design a statistical alg. $(x'_t)_t$ that, using S, achieves optimal statistical complexity

$$\mathbb{E}_S[f(x_t') - \inf_{x \in \mathcal{B}} f(x)] \sim \inf_{\substack{(x_t')_t \\ \text{first-order solvers}}} \sup_{P,\ell} \mathbb{E}_S[f(x_t') - \inf_{x \in \mathcal{B}} f(x)].$$

Posed by Attia & Koren (2022), who solved for p=2.

Main Idea

Apply an optimization algorithm to the ERM with added regularization:

$$x_{\mu}^* \in \underset{x \in \mathcal{X}}{\arg\min} f_S^{(\mu)}(x) := f_S(x) + \mu \frac{\alpha}{p} ||x - x_0||_p^p,$$

where $\alpha > 0$ ensures that $\psi(x) \coloneqq \frac{\alpha}{p} ||x - x_0||_p^p$ is

- (1, p)-uniformly convex for $p \ge 2$, and
- (1,p)-Hölder smooth for $p \in (1,2)$ w.r.t. ℓ_p -norm.

Also, $\psi(x)$ is locally smooth for $p \geq 2$ and strongly convex for $p \in (1,2)$ w.r.t. ℓ_p norm.

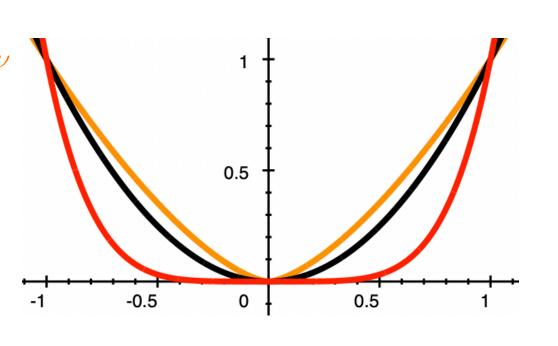
Uniformly Convex Regularization

 (μ, ν) -Uniform Convexity of $\psi(x), \nu \geq 2$:

$$\psi\left(tx+(1-t)y\right)\geq t\psi(x)+(1-t)\psi(y)+t(1-t)\frac{\mu}{\nu}\|x-y\|^{\nu}$$

$$(L,\nu)\text{-H\"older smoothness of }f(x),\nu\in[1,2]\text{:}$$

$$f(y) \le f(x) + \langle \nabla \ell(x), y - x \rangle + \frac{L}{\nu} ||x - y||^{\nu}$$



References

- 1. Attia and Koren. Uniform Stability for First-Order Empirical Risk Minimization.ICLR, 2021.
- 2. Bousquet and Elisseeff. Stability and Generalization. Journal of Machine Learning Research, 2002.
- 3. Sridharan. Learning From An Optimization Viewpoint. PhD Thesis. Toyota Technological Institute at Chicago, 2012.
- 4. Levy & Duchi. Necessary and Sufficient Geometries for Gradient Methods. NeurIPS, 2019.

Algorithmic Stability after Uniformly Convex Regularization

Uniform Algorithmic Stability (Bousquet and Elisseeff; 2002):

Let $x' = \mathcal{A}(S_i)$ be the output of alg. \mathcal{A} trained on $S_i = \{z_1, \ldots, z_{i-1}, z'_i, z_{i+1}, \ldots, z_N\}$. Then:

$$\underbrace{\mathbb{E}_{S}[f(\hat{x}) - f_{S}(\hat{x})]}_{\text{Statistics}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[\ell(\hat{x}, z_{i}') - \ell(x', z_{i}')] \le \sup_{z \in \mathcal{Z}} |\ell(\hat{x}; z) - \ell(x'; z)| =: \varepsilon_{\text{stab}}(\mathcal{A}),$$

and we say the algorithm $\mathcal{A}(\cdot)$ is $\varepsilon_{\mathrm{stab}}(\mathcal{A})$ -uniformly stable.

Lemma (Stability after Uniformly Convex Regularization):

Let loss $\ell(\cdot,z)$ be convex G-Lipschitz w.r.t $\|\cdot\|$, $\mu\psi(x)$ is (μ,ν) -uniformly convex w.r.t $\|\cdot\|$. Then

$$\hat{x} \in_{\varepsilon} \arg\min \left[f_S(x) + \mu \psi(x) \right],$$

$$x \in \mathcal{B}_{\|\cdot\|}(R)$$

has its stability and optimization bounded as

$$\varepsilon_{\text{stab}}(\mathcal{A}) \leq 3 \left(\frac{2\nu}{n\mu} G^{\nu}\right)^{\frac{1}{\nu-1}}$$

$$\varepsilon_{\text{opt}}(\mathcal{A}) \coloneqq f_{S}(\hat{x}) - \min_{x \in \mathcal{B}_{n}(R)} f_{S}(x) \leq 2\mu R^{\nu},$$

provided $\varepsilon \leq \min\{\mu R^{\nu}, (\nu/\mu)^{1/(\nu-1)}(2G/n)^{\nu/(\nu-1)}\}.$

Black-box Non-Euclidean Uniform Stability

Black-box scheme (with soft-restarts) that computes ε_i -approx. locally-strongly $(p \in$ (1,2)) / globally-uniformly $(p \ge 2)$ convex regularized ERMs.

Optimization algorithm $\mathcal{A}(f_S^{(\mu)}, x_0, R, \hat{\varepsilon})$:

- for convex Hölder smooth functions,
- takes x_0 , $R \ge 0$, and target accuracy $\hat{\varepsilon}$,

and outputs a point $\hat{x} \in \mathcal{B}_p(x_0, R)$ such that

$$f_S^{(\mu)}(\hat{x}) - \inf_{x \in \mathcal{B}_n(x_0,R)} f_S^{(\mu)}(x) \le \hat{\varepsilon},$$

using at most \hat{T} gradient oracle calls.

Theorem (Black-box Uniform Stability):

loss $\ell: \mathbb{R}^d \to \mathbb{R}$ convex and L-smooth w.r.t. $\|\cdot\|_p$ and an optimization alg. A with convergence rate $C\hat{L}||x_0-x^*||_p^{\hat{p}_1}/\hat{T}^{\gamma}$ for convex, (\hat{L},\hat{p}_1) -Hölder smooth functions, where $\hat{p}_1 = \min\{p, 2\}$. Then, the iterate x_T produced by the black-box scheme with restarts USOLP(A, T) initialized at x_0 , satisfies,

- 1. $arepsilon_{ ext{stab}}(ext{USOLP}(\mathcal{A},T)) = \widetilde{\mathcal{O}}_p((T^{\gamma}/n)^{\frac{1}{\widehat{p}_2-1}}LR^2),$
- 2. $\varepsilon_{\text{opt}}(\text{USOLP}(\mathcal{A}, T) := f_S(x_T) f_S(x^*) = \widetilde{\mathcal{O}}_p(LR^2/T^{\gamma}),$

for $p \in (1, \infty)$ where $\hat{p}_2 = \max\{p, 2\}$ and $T = \sum_{i=1}^r \hat{T}_i$ is the sum of gradient oracle calls from all stages.

UB (Euclidean ℓ_2 -norm) UB (Non-Euclidean, ℓ_p -norm) LB (Non-Euclidean, ℓ_p -norm)

 $\widetilde{\mathcal{O}}_p(LR^2\left(rac{1}{n}
ight)^{1/2})$ $\widetilde{\mathcal{O}}_p(LR^2rac{d^{1/2-1/\hat{p}}}{n^{1/2}})$ (This work) $d \leq n \left| \widetilde{\Omega}_p(LR^{2\frac{d^{1/2-1/\hat{p}}}{n^{1/2}}}) \right|$ (Levy & Duchi; 2019) $\widetilde{\Omega}_{p}(LR^{2}\left(rac{1}{p}
ight)^{1/\widehat{p}})$ (This work) (Attia & Koren; 2022) $\widetilde{\mathcal{O}}_p(LR^2\left(\frac{1}{n}\right)^{1/\hat{p}})$ (This work)

Table 1. Excess risk bounds for black-box reduction algorithms for ERM with loss functions in \mathbb{R}^d that are L-smooth over the ball of radius R w.r.t. ℓ_p -norm, $p \ge 1$, $\hat{p} = \max\{p, 2\}$.

- Lower bound: we extend low-dim $(d \le n)$ results in (Levy and Duchi; 2019) and improve upon high-dim $(d \ge n)$ results in (Sridharan; 2012).
- Upper bound: we prove optimal stability using dimension-independent constants for uniform convexity (also giving speed-up captured by restarts)

Example: Classification in ℓ_p -balls

Example:

- Data: $(Z_i, Y_i) \in \mathbb{R}^d \times \{-1, 1\}$, with $||Z_i||_q \leq R$, $q \in (1, 2]$
- Loss function: $\ell(x,(z,y)) = h(y\langle x,z\rangle), h: \mathbb{R} \to \mathbb{R}$ convex and L-smooth

The $\ell(\cdot,(z,y))$ loss is LD^2 -smooth with respect to both

- the ℓ_p norm, with $p = \frac{q}{q-1} \ge 2$
- the ℓ_2 norm (as $||x||_2 \le ||x||_q$)

Which regularizer to use? Depends!

- Sample size dependence: ℓ_2 norm yields rates that are $n^{1/2-1/p}$ better
- Dimensionality dependence: ℓ_p norm yields rates that are up to $d^{1/2-1/p}$ better (Depending on the ℓ_p distance from initial point of algorithm to ERM minimizer).