Tensor Network Based Feature Learning Model

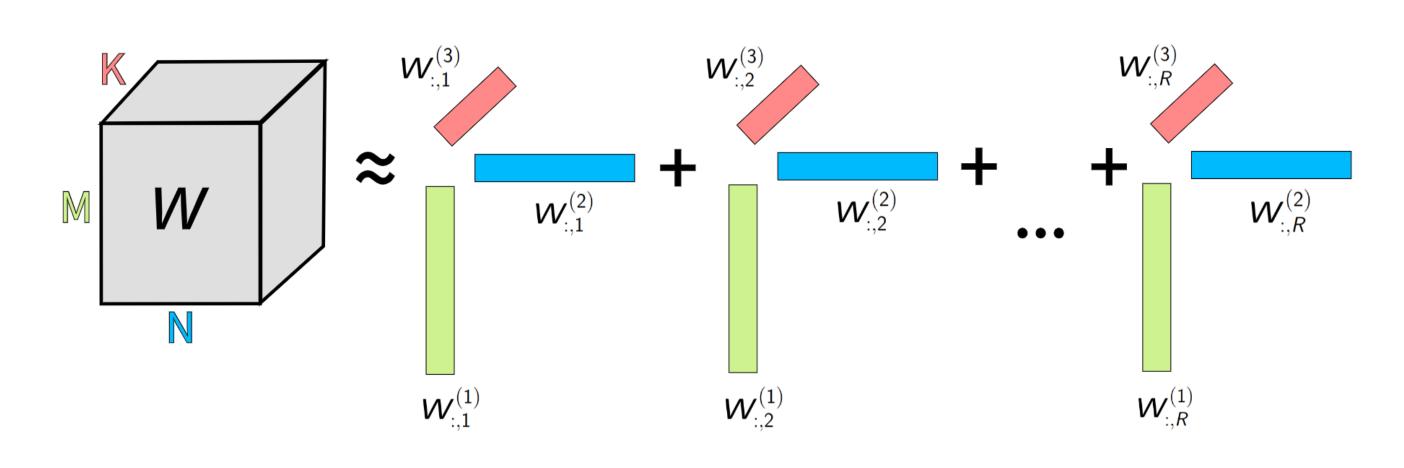
Albert Saiapin¹ Kim Batselier¹

TUDelft

¹ Delft Center for Systems and Control, Delft University of Technology

1 Introduction

In prior works [1] [2], the authors explored a kernel-based model parameterized by a CP tensor network [3]:



$$egin{aligned} oldsymbol{y} &= oldsymbol{\phi}_{ heta}(oldsymbol{x})^{ op} oldsymbol{w} &= \left(oldsymbol{\psi}_{ heta}^{(D)}(oldsymbol{x}_D) \otimes \cdots \otimes oldsymbol{\psi}_{ heta}^{(1)}(oldsymbol{x}_1)
ight)^{ op} oldsymbol{w}, \ oldsymbol{w} &= \sum_{r=1}^R oldsymbol{W}_{:,r}^{(D)} \otimes \cdots \otimes oldsymbol{W}_{:,r}^{(1)}. \end{aligned}$$

Why is this CP network-based kernel model interesting?

- Leverages deterministic features to achieve better convergence compared to random Fourier features;
- Allows to work with large-scale datasets compared to Kernel methods (GP, Kernel Ridge regression);
- Mitigates the curse of dimensionality associated with a direct solution approach: $\mathcal{O}\left(e^{D}\right) o \mathcal{O}\left(D\right)$.

What is the problem?

How to choose hyperparameters θ of the feature map $\phi_{\theta}(x)$?

2 Feature Learning Model

Problem Solution - FL model

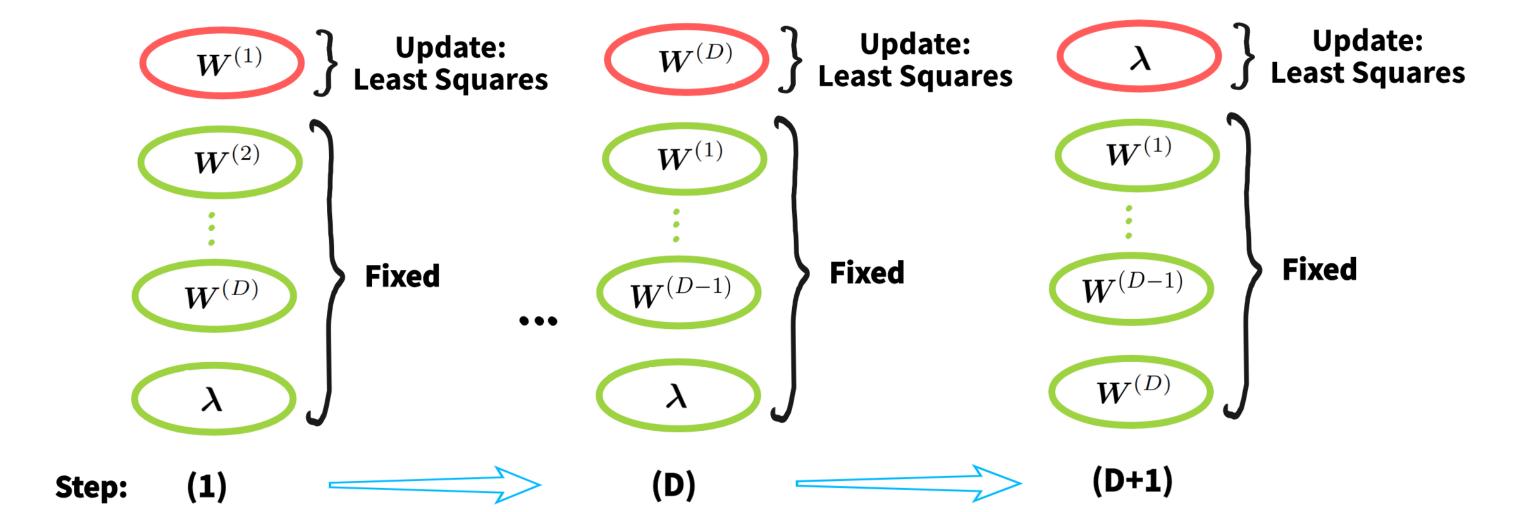
$$f(oldsymbol{x}) = \left[\sum_{p=1}^P \lambda_p \, oldsymbol{\psi}_{ heta_p}^{(D)}(oldsymbol{x}_D) \otimes \cdots \otimes oldsymbol{\psi}_{ heta_p}^{(1)}(oldsymbol{x}_1)
ight]^ op oldsymbol{w}$$

Optimal model parameters - $[\lambda_p]_{p=1}^P$ and $[W^{(k)}]_{k=1}^D$ can be learned from the data by solving non-convex non-linear optimization problem:

$$\frac{1}{2} \| \boldsymbol{y} - \sum_{p=1}^{P} \lambda_p \boldsymbol{\Phi}_p \boldsymbol{w} \|_2^2 + \frac{\alpha}{2} \| \boldsymbol{w} \|_2^2 + \frac{\beta}{2} \| \boldsymbol{\lambda} \|_2^2,$$
s.t. $\boldsymbol{w} = \sum_{r=1}^{R} \boldsymbol{W}_{:,r}^{(D)} \otimes \cdots \otimes \boldsymbol{W}_{:,r}^{(1)}.$

What are the advantages of the FL model?

- Replaces discrete hyperparameters search with continuous optimization;
- Enables combining various feature maps (Fourier, polynomial, etc.);
- Uses effective Alternating Least Squares (ALS) optimization:



3 Results

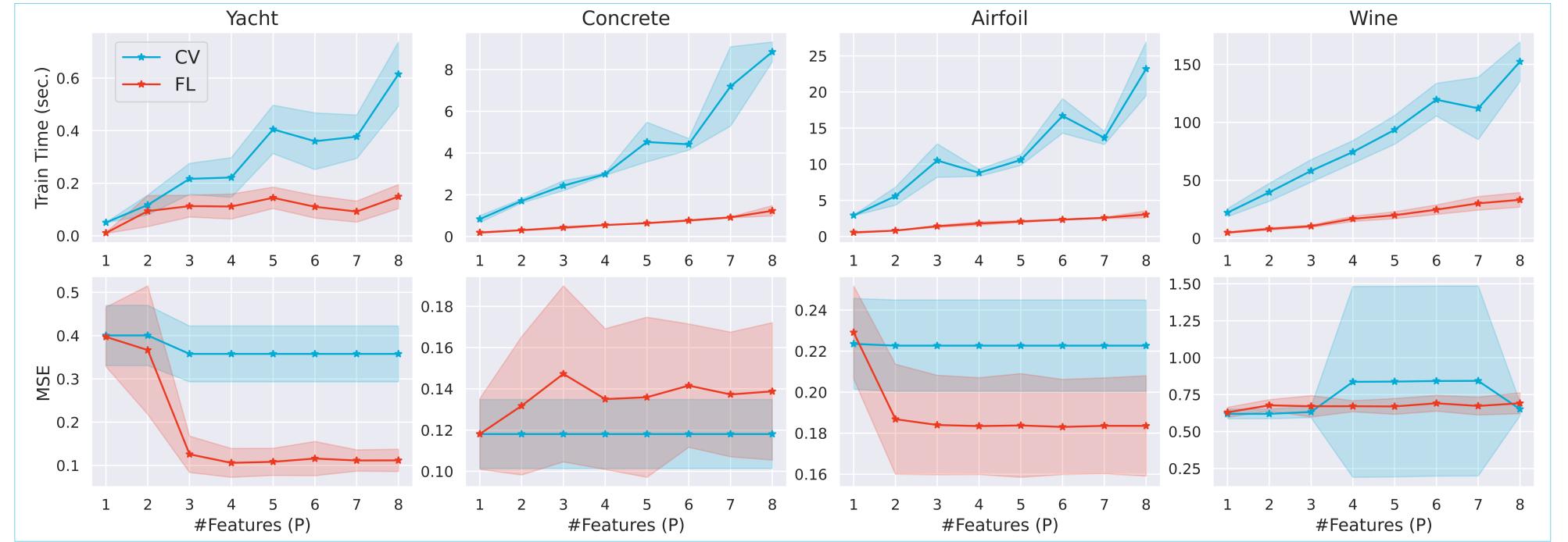


Figure: Plots of the training time (first row) and test MSE (second row) of FL and CV models (red and blue curves respectively) as a function of the number of features P for different real-life datasets (column-wise). Solid lines represent mean metric calculations and shaded regions depict ± 1 standard deviation around the mean across 10 restarts.

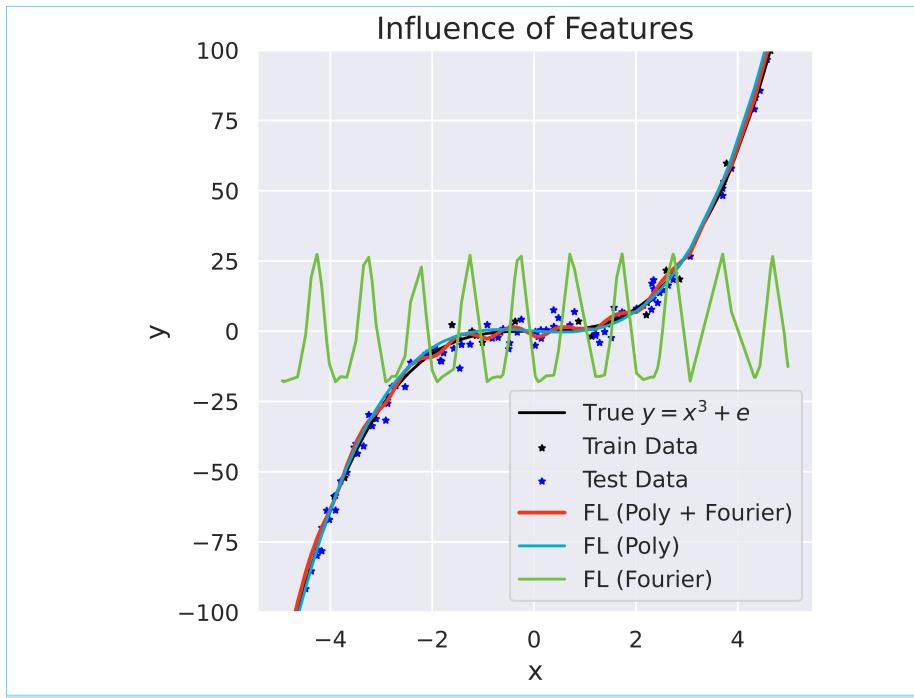


Figure: Plot illustrating the approximation quality of different feature maps. 'Poly' denotes polynomial features (powers), while 'Fourier' represents Fourier features.

Main Outcome

The proposed FL model requires consistently less time to train compared to the conventional cross-validation. Likewise the prediction error of the FL model is either similar to CV (shaded regions intersect) or significantly lower (Yacht data) that demonstrates the superiority of the FL model.

4 Future Work

- Develop a parallel FL model by utilizing the model's CP structure;
- Explore a probabilistic formulation of the FL model, enabling uncertainty estimation for classification and regression tasks;
- Incorporate a sparsity-inducing prior over factors $W_{(d)}$, resulting in automatic rank determination.

References

- [1] A. Haliassos, K. Konstantinidis, and D. Mandic. Supervised Learning for Nonsequential Data: A Canonical Polyadic Decomposition Approach. 2021.
- [2] F. Wesel and K. Batselier. *Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models*. 2024.
- [3] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. *Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions.* 2016.