Selecting the Number of Communities for Weighted Degree-Corrected Stochastic Block Models

Yucheng Liu Xiaodong Li

University of California, Davis

Introduction

- ► Weighted networks often reveal more refined community structure than corresponding unweighted ones.
- ► We want to study how to consistently estimate the number of communities in weighted networks under mild conditions.

Contributions:

- 1 We propose the weighted DCSBM, which is a generic model for weighted networks without modeling the likelihood.
- 2 We propose a stepwise testing procedure in selecting the number of communities under the weighted DCSBM and prove the consistency of the procedure under mild conditions.
- 3 We generalize the Nonsplitting Property of SCORE to weighted DCSBM.
- 4 Simulations on both synthetic and real-world weighted networks show empirical consistency of our proposed procedure.

Weighted DCSBM

- ► Key difference from standard DCSBM: Instead of specifying the exact likelihood, the model only specifies the first two moments.
- ▶ Parameters: θ_i is the heterogeneity parameter; $\pi_i \in \mathbb{R}^K$ indicates the community belonging of node i; \boldsymbol{B} is the $K \times K$ symmetric community connectivity matrix.
- ▶ First moment: $\mathbb{E}[A_{ij}] \coloneqq M_{ij} = \theta_i \theta_j \boldsymbol{\pi}_i^{\top} \boldsymbol{B} \boldsymbol{\pi}_j$.
- ▶ Second moment: $V_{ij} := var(A_{ij}) = \nu(M_{ij})$, where ν is known from the underlying distribution.

Estimation of parameters:

- ► Node community belonging is estimated by SCORE.
- $lackbox{} \hat{ heta}_i^{(m)}\coloneqq rac{\sqrt{(\hat{f 1}_k^{(m)})^{ op}m{A}\hat{f 1}_k^{(m)}}}{(\hat{f 1}_i^{(m)})^{ op}m{A}m{1}_n}d_i,$ where d_i is the degree of node i.
- $\widehat{B}_{kl}^{(m)} \coloneqq \frac{(\widehat{\mathbf{1}}_k^{(m)})^\top A \widehat{\mathbf{1}}_l^{(m)}}{\sqrt{(\widehat{\mathbf{1}}_k^{(m)})^\top A \widehat{\mathbf{1}}_k^{(m)}} \sqrt{(\widehat{\mathbf{1}}_l^{(m)})^\top A \widehat{\mathbf{1}}_l^{(m)}}}.$

Assumption 1

Denote $\theta_{\max} = \max\{\theta_1, \dots, \theta_n\}$ and $\theta_{\min} = \min\{\theta_1, \dots, \theta_n\}$. c_0 is a small constant. We assume the following conditions hold:

- \blacktriangleright [Fixed rank] The true number of communities K is fixed.
- ► [Balancedness]

$$\min_{1 \leq k \leq K} rac{n_k}{n} \geq c_0$$
 and $rac{ heta_{\min}}{ heta_{\max}} \geq c_0.$

► [Sparseness]

$$\frac{1}{c_0} \ge \theta_{\text{max}} \ge \theta_{\text{min}} \ge \frac{\log^3 n}{\sqrt{n}}.$$

▶ [Community connectivity] The $K \times K$ matrix \boldsymbol{B} is fixed, and its entries and eigenvalues satisfy

$$\begin{cases} B_{kk} = 1 & \text{for } k = 1, \dots, K, \\ c_0 \leq B_{kl} \leq 1 & \text{for } 1 \leq k, l \leq K, \\ \lambda_1(\boldsymbol{B}) > |\lambda_2(\boldsymbol{B})| \geq \dots \geq |\lambda_K(\boldsymbol{B})| \geq c_0 > 0. \end{cases}$$

- ► [Variance-mean function] The function $\nu(\cdot)$ satisfies $c_0\mu \le \nu(\mu) \le \mu/c_0$ and $\nu(\cdot)$ is $1/c_0$ -Lipschitz.
- ▶ [Bernstein condition] For any $i \leq j$ and any integer $p \geq 2$, there holds

 $\mathbb{E}[|A_{ij} - M_{ij}|^p] \le \left(\frac{p!}{2}\right) R(c_0)^{p-2} \nu(M_{ij}),$

where $R(c_0)$ is a constant only depending on c_0 .

Our Algorithm

SVPS: Stepwise Variance Profile Scaling

For m = 1, 2, ...:

- 1 Group nodes into m distinct communities using SCORE.
- 2 Obtain estimated mean adjacency matrix $\widehat{\boldsymbol{M}}^{(m)}$ by fitting DCSBM and derive the estimated variance profile matrix $\widehat{\boldsymbol{V}}^{(m)}$ using the variance-mean relationship.
- 3 Find the scaling matrix $\widehat{\Psi}^{(m)}$ such that $\widehat{\Psi}^{(m)}\widehat{V}^{(m)}\widehat{\Psi}^{(m)}$ is doubly stochastic (every row sum equals 1).
- 4 Obtain test statistic $T_{n,m} = \left| \lambda_{m+1} \left(\left(\widehat{\mathbf{\Psi}}^{(m)} \right)^{\frac{1}{2}} \mathbf{A} \left(\widehat{\mathbf{\Psi}}^{(m)} \right)^{\frac{1}{2}} \right) \right|$. Stop the procedure if $T_{n,m} < 2 + \epsilon$ and obtain $\widehat{K} = m$.

Theoretical Results

Theorem (Null Case). If we implement SVPS with m=K and SCORE for spectral clustering, then for any fixed $c_0>0$ in Assumption 1, as $n\to\infty$, we have $T_{n,m}\leq 2+o_P(1)$.

Theorem (Underfitting Case). If we implement SVPS with m < K and SCORE for spectral clustering, then for any fixed $c_0 > 0$ in Assumption 1, as $n \to \infty$, we have $T_{n,m} \stackrel{P}{\longrightarrow} \infty$.

Definition (Nonsplitting Property (Jin et al., 2022)). The estimated communities of a network satisfy the Nonsplitting Property if the true communities are a refinement of the estimated ones.

Lemma (Nonsplitting Property). Under Assumption 1, with any fixed $c_0 > 0$, for any fixed $m \le K$, SCORE satisfies the NSP with probability $1 - O(n^{-3})$.

Experiments

Generating mechanism of synthetic networks:

- ► Underlying generating distributions: Poisson, binomial and negative binomial.
- $\blacktriangleright B_{kl} = \rho \left(1 + r \times \mathbf{1}_{\{k=l\}} \right).$

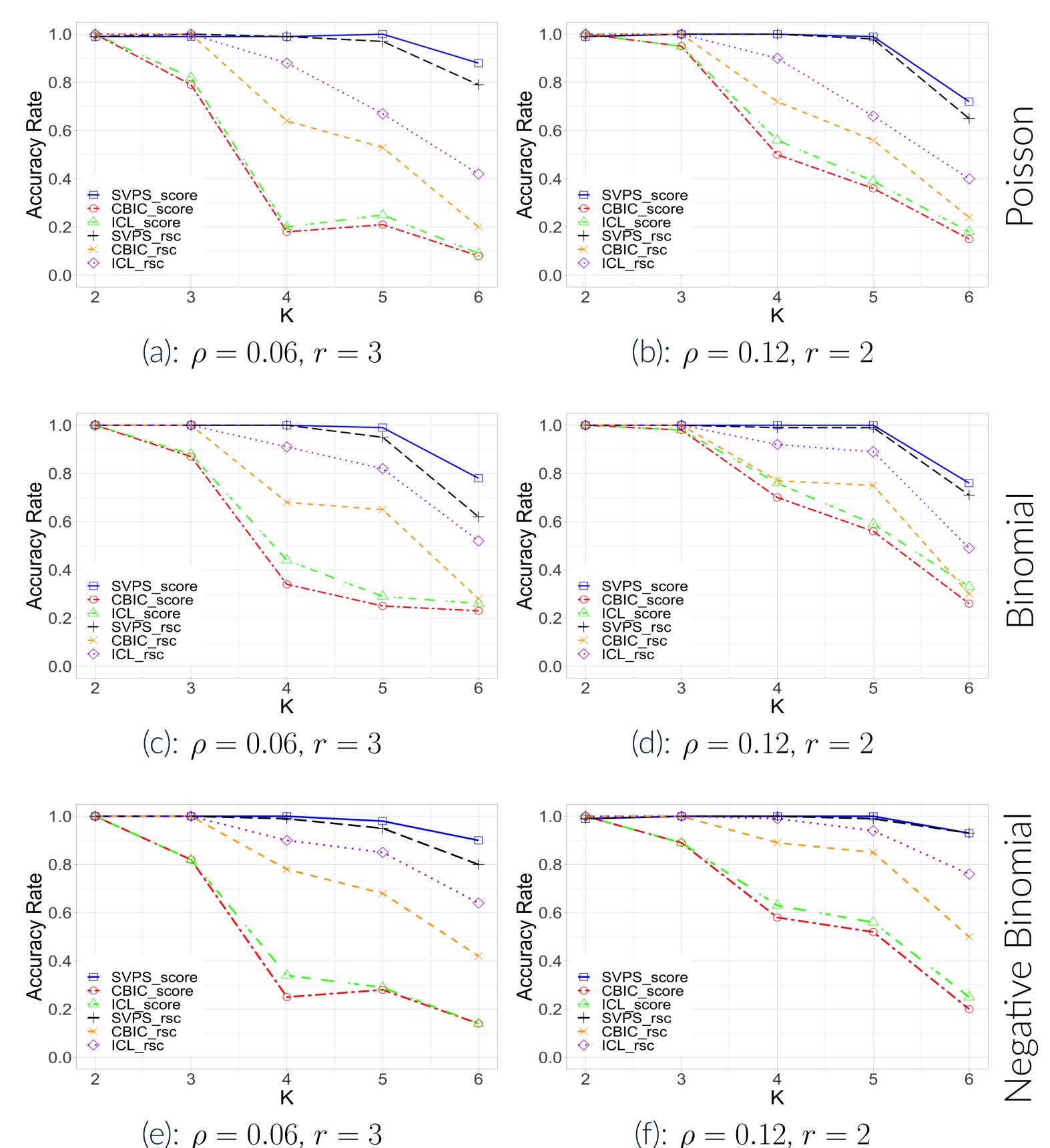


Figure 1: Accuracy rate of SVPS and other methods for comparison.