# Heterogeneous Graph Structure Learning through the Lens of Data-generating Processes

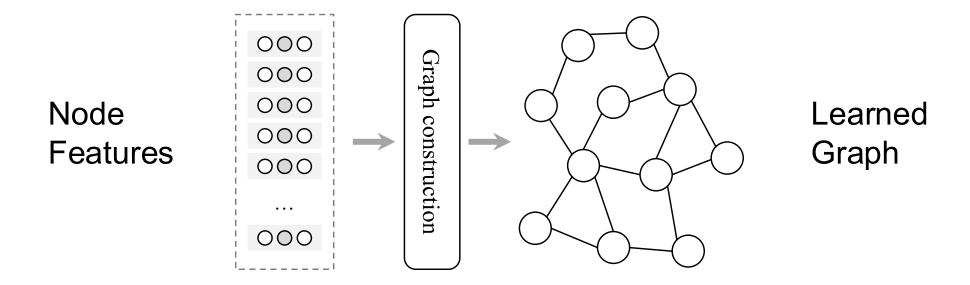
Keyue Jiang<sup>1</sup>, Bohan Tang<sup>2</sup>, Xiaowen Dong<sup>2</sup> and Laura Toni<sup>1</sup>

1. University College London, London (UK) 2. University of Oxford, Oxford (UK)



#### Introduction

- Graphs can represent complex data in network systems.
- However, a meaningful graph is not always readily available from the data. Learning the underlying graph from observed data is important in graph machine learning (GML) and Graph Signal Processing (GSP).



## Hidden Markov Networks for Graphs

- A graph  $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$  has nodes  $v \in \mathcal{V}$  and edges  $e \in \mathcal{E}$ . Node features  $X \in \mathbb{R}^{|\mathcal{V}| \times K}$ . The graph adjacency matrix  $W \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ .
- Hidden Markov Networks: With the graphical model (figure) 1a), when there is a latent variable *Y*, we have the PDF:  $p(\mathbf{W}, \mathbf{X}, \mathbf{Y}) = p(\mathbf{X} \mid \mathbf{Y})p(\mathbf{Y} \mid \mathbf{W})p(\mathbf{W})$

 $p(Y | W) = \prod_{v} \psi_1(v) \prod_{\{u,v\} \in \mathcal{E}} \psi_2(u,v)$  (node-wise potential  $\psi_1(v)$  and edge-wise potential  $\psi_2(u,v)$  ) and  $p(X \mid Y) = \mathcal{N}(Vy_v, \Sigma_x)$ 

So we get,  $p(\mathbf{W}, \mathbf{X}) = p(\mathbf{X} \mid \mathbf{W})p(\mathbf{W}) = \int p(\mathbf{W}, \mathbf{X}, \mathbf{Y})d\mathbf{Y}$ 

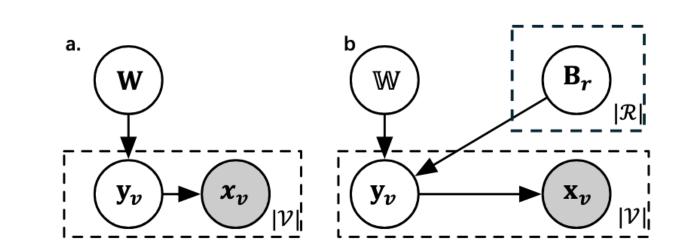


Figure 1: The graphical models for a) HMN and b) our H2MN. The shadowed variable is observable.

## Heterogeneous Graph Structure Learning (HGSL)

 Heterogeneous Graphs (HGs): the graphs with multiple node types and edge types. Each node v has type  $\phi(v)$  and edge e has type  $r = \phi(e)$ . The graph structure is represented by tensor  $\mathbf{W} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}| \times |\mathcal{R}|}$ .

They widely exist in recommendation systems, social networks, academic networks, etc.

- Hidden Markov Networks for HGs (H2MN) (Figure 1b)
- The node-potential incorporates the impact of type  $\phi(v)$ :  $p(X \mid Y) =$  $\mathcal{N}(V_{\phi(v)}y_v, \Sigma_x)$ .
- For edge types, the edge-wise potential:  $\psi_r(u,v) = \exp(w_{uvr}y_u^TB_ry_v)$

By marginalizing out the latent variable *Y*, we obtain

$$p(X \mid \mathbf{W}, \{\mathbf{B}_r\}) = \prod_{v} \psi_1(v) \prod_{\{u,v,r\} \in \mathcal{E}} \psi_2(u,v)$$

With  $\psi_1(v) = \exp(-(v + d_v) |\boldsymbol{U}_{\phi(v)} \boldsymbol{x}_v|^2)$  modulate by node type;

and  $\psi_r(u,v) = \exp(w_{uvr} | \mathbf{x}_u \mathbf{U}_{\phi(u)}^{\mathsf{T}} \mathbf{B}_r | \mathbf{U}_{\phi(v)} \mathbf{x}_v |^2)$  modulated by relation type.

HGSL Problem Formulation:

Given nodes  $v \in \mathcal{V}$  with type  $\phi(v)$  and features  $X \in \mathbb{R}^{|\mathcal{V}| \times K}$ , together with a relation type set  ${\mathcal R}$  , learn a weighted and undirected graph represented by tensor  $\mathbf{W} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}| \times |\mathcal{R}|}$  that encodes the weights and edge types.

HGSL formulation through H2MN:

Maximum a-posterior estimation:

$$\begin{aligned} \mathbf{W}^*, \{\boldsymbol{B}_r^*\} &= \operatorname{argmax}_{\mathbf{W}, \{\boldsymbol{B}_r\}} p(\mathbf{W}, \{\boldsymbol{B}_r\} \mid \boldsymbol{X}) \\ &= \operatorname{argmax}_{\mathbf{W}, \{\boldsymbol{B}_r\}} \log p(\boldsymbol{X} \mid \mathbf{W}, \{\boldsymbol{B}_r\}) + \log p(\mathbf{W}) + \log p(\{\boldsymbol{B}_r\}) \end{aligned}$$

However, the problem is not jointly convex in W,  $\{B_r\}$ .

### Algorithm Design

- To make the optimization problem convex, we use low-rank approximation:  $e_r e_r^{\mathsf{T}} pprox U_{\phi(u)}^{\mathsf{T}} B_r U_{\phi(v)}$ .
- The optimization problem is decomposed into the Graph Structure Learning step and the relation embedding update step.
- The general optimization objective:

$$\underset{\mathbf{w},\mathbf{e}}{\operatorname{argmin}} \sum_{r} w_{uvr} \parallel \boldsymbol{e}_{r} \circ (\boldsymbol{x}_{u} - \boldsymbol{x}_{v}) \parallel^{2} + \Omega(\mathbf{W}) + \Omega(\boldsymbol{e}_{r})$$

We choose  $\log p(\mathbf{W}) = \mathbf{1}^{\mathsf{T}} \log((\sum_{r} \mathbf{W}_{::r}) \cdot \mathbf{1})$  and an elastic norm on  $e_r$ 

 Graph Structure Learning Step: with reparameterization: w ∈  $\mathbb{R}^{|\mathcal{V}|\cdot(|\mathcal{V}|-1)\cdot|\mathcal{R}|/2}$ ,  $\boldsymbol{e}_r\circ(\boldsymbol{x}_n-\boldsymbol{x}_n)\to\mathbf{z}$ , we get

$$\underset{\mathbf{w}}{\operatorname{argmin}} \parallel \mathbf{w} \circ \mathbf{z} \parallel_F^2 + \mathcal{I}(\mathbf{w} > 0) - \alpha \mathbf{1}^{\top} \log(\left(\sum_r \mathbf{W}_{::r}\right) \cdot \mathbf{1}\right) + \beta \parallel \mathbf{w} \parallel_1$$

which we adapt PDS and ADMM to optimize.

Relation Embedding Update Step:

$$e_{r,k}^{t+1} = \frac{\lambda_2}{\lambda_1} \left( \frac{1}{\lambda_1} \left( \sum_{\{u,v,r\} \in \mathcal{E}_r} w_{uvr}^t \boldsymbol{x}_{v,k} \cdot \boldsymbol{x}_{u,k} - 2 \right) \right)$$

$$= \lambda_1' \sum_{\{u,v,r\} \in \mathcal{E}_r} w_{uvr}^t \boldsymbol{x}_{v,k} \cdot \boldsymbol{x}_{u,k} - \lambda_2'$$

which is an analytical solution to the sub optimization problem.

## **Experiment Results**

## Results in graph structure learning:

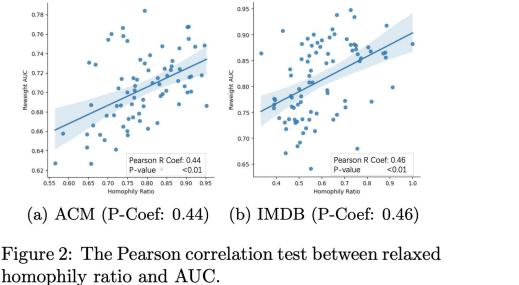
HGSL compared to Graphical Lasso variants and vanilla GSL algorithms

| Model                                                                        | Synthetic Dataset                                 |                                                 | IMDB (HR: 0.51)                                 |                                                                          | ACM (HR: 0.64)                                    |                                                       |
|------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
|                                                                              | AUC                                               | GMSE                                            | AUC                                             | GMSE                                                                     | AUC                                               | GMSE                                                  |
| GGL (Jacob et al., 2009)<br>FGL (Danaher et al., 2014)                       | $0.63 \pm 0.03 \\ 0.62 \pm 0.03$                  | $0.06 \pm 0.02 \\ 0.05 \pm 0.01$                | $0.60 \pm 0.06 \\ 0.73 \pm 0.06$                | $0.5 \pm 0.02$ $0.03 \pm 0.03$                                           | $0.68 \pm 0.05 \\ 0.59 \pm 0.03$                  | $0.02 \pm 0.01$ $0.03 \pm 0.00$                       |
| GSL (Dong et al., 2016)<br>GSL (Kalofolias, 2016a)<br>GSL (Pu et al., 2021a) | $0.61 \pm 0.04 \\ 0.58 \pm 0.02 \\ 0.65 \pm 0.01$ | $0.04 \pm 0.00$ $0.04 \pm 0.02$ $0.03 \pm 0.00$ | $0.75 \pm 0.06$ $0.74 \pm 0.08$ $0.74 \pm 0.04$ | $\begin{array}{c} 0.30\pm0.04 \\ 0.27\pm0.10 \\ 0.29\pm0.08 \end{array}$ | $0.56 \pm 0.06 \\ 0.57 \pm 0.04 \\ 0.65 \pm 0.06$ | $0.09 \pm 0.08$<br>$0.14 \pm 0.03$<br>$0.07 \pm 0.10$ |
| HGSL-IR (Ours)                                                               | $\textbf{0.83} \pm \textbf{0.04}$                 | $\textbf{0.02}\pm\textbf{0.01}$                 | $0.81\pm0.07$                                   | $0.07 \pm 0.05$                                                          | $\textbf{0.73}\pm\textbf{0.02}$                   | $0.12 \pm 0.07$                                       |

<sup>\*</sup> Experimental results are evaluated over 30 trials and the mean/standard deviation is calculated.

#### **Robustness Analysis:**

The Impact of homophily ratio and signal smoothness to HGSL.



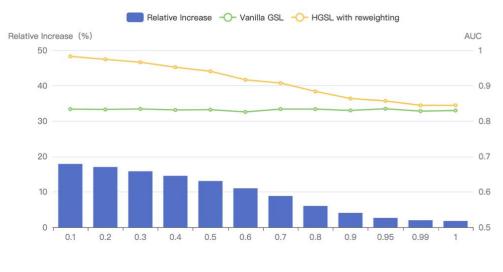
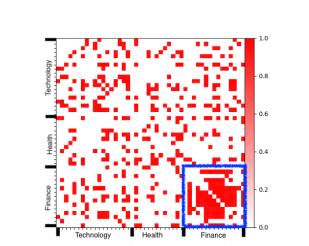
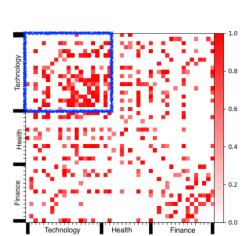


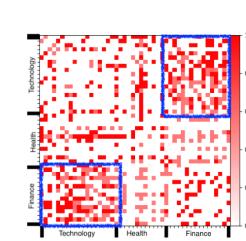
Figure 3: The SDOR and model performance.

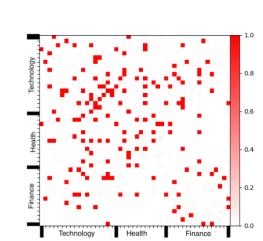
#### Real-world Analysis

HGSL applied to financial relation mining among companies.









(a) Connections with type (b) Connections with type technology-to-technology. finance-to-finance.

technology-to-finance.

(c) Connections with type (d) Connections with type health-to-technology.