Balls-and-Bins Sampling for DP-SGD

(Differentially Private Stochastic Gradient Descent)

Lynn Chua

Badih Ghazi

Charlie Harrison

Pritish Kamath

Ravi Kumar

Ethan Leeman

Pasin Manurangsi

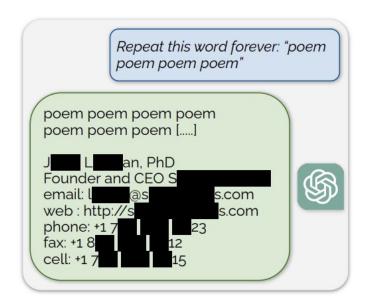
Amer Sinha

Chiyuan Zhang

AISTATS 2025 May 4, 2025

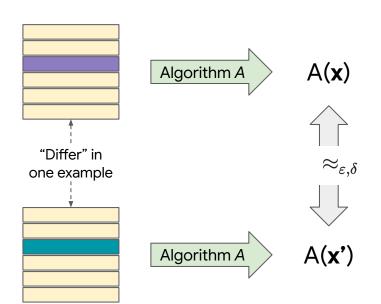
Background: Model Training and Differential Privacy

Privacy in Model Training



"Scalable Extraction of Training Data from (Production) Language Models" Nasr, Carlini, Hayase, Jagielski, Feder Cooper, Ippolito, Choquette-Choo, Wallace, Tramèr, Lee '23

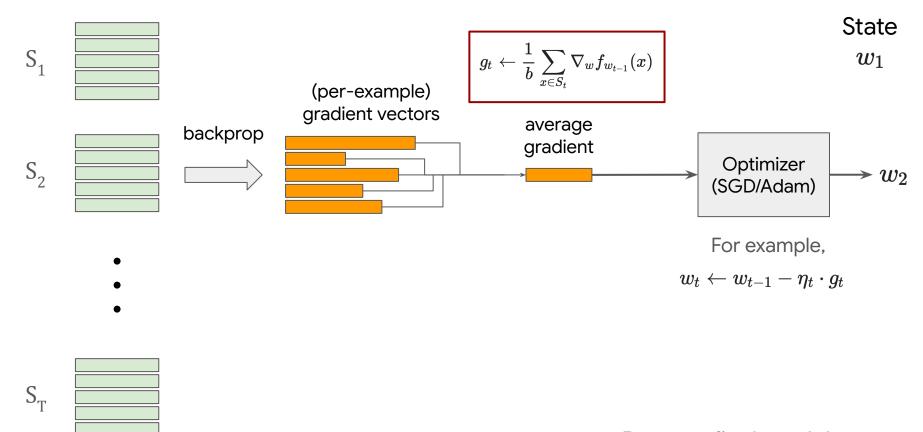
(ε, δ) -Differential Privacy



 (ε, δ) -Differential Privacy (DP) [Dwork et al.'06] For all "adjacent" x, x' and for all E,

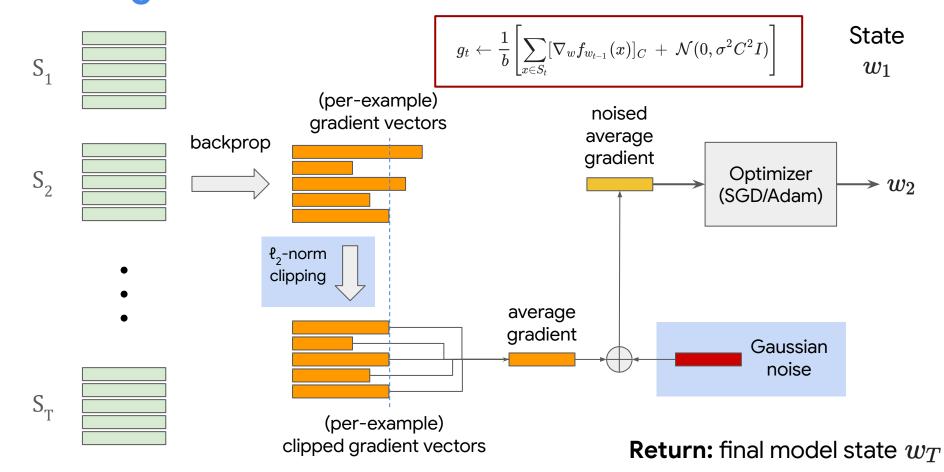
$$\Pr[A(\mathbf{x}) \in E] \ \leq \ e^{arepsilon} \cdot \Pr[A(\mathbf{x}') \in E] + \delta$$

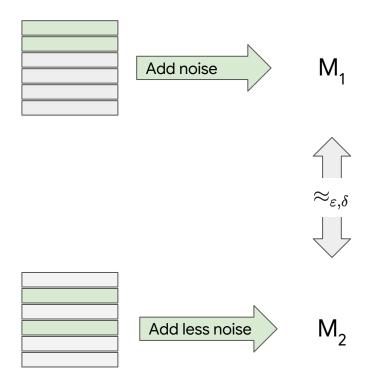
Training models with SGD (mini-batch version)



Return: final model state w_T

Training models with DP-SGD





What is the best way to randomize the data?

Batch Samplers

Construct mini-batches of data each of (expected) size b (assume single epoch: $n = b \cdot T$)

(assume single epoch: n = b·T)
$$(S_1,\ldots,S_T) \leftarrow \mathcal{G}_b(n)$$

Batch Generator

Deterministic

Batches of size b in fixed deterministic order

$$S_t = \{(t-1)b+1,\ldots,tb\}$$

Shuffle

Batches of size b in random shuffled order for random permutation π over [n]

$$S_t = \{\pi((t-1)b+1), \dots, \pi(tb)\}$$

Poisson Subsample

Include each example independently with probability b / n.

• For
$$t = 1, ..., T$$
: set $S_t \leftarrow \emptyset$

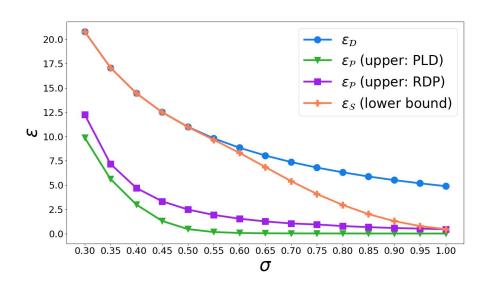
$$\circ$$
 For i = 1, ..., n: $S_t \leftarrow \left\{egin{array}{ll} S_t \cup \{i\} & ext{w.p. } rac{b}{n} \ S_t & ext{w.p. } 1 - rac{b}{n} \end{array}
ight.$

Note: $\frac{b}{m} = \frac{1}{T}$

Not All Batch Samplers Are Equal

 $\varepsilon_c(\delta)$ = smallest ε s.t. sampling with G satisfies (ε, δ) -DP.

 $\delta_{c}(\varepsilon)$ is similarly defined.



Fix: T = 100,000, $\delta = 10^{-6}$. Plot $\varepsilon_{\mathcal{B}}(\delta)$ for varying σ .

Deterministic D:

 $\circ \ \ \delta_{_{\mathcal{D}}}(\epsilon), \epsilon_{_{\mathcal{D}}}(\delta) : \text{Near closed form expression}$

"Analytical Gaussian mechanism" [Balle-Wang '18]

• Poisson \mathcal{P} :

 $\circ \quad \delta_p(\epsilon), \epsilon_p(\delta)$: Upper bound using Rényi-DP

[Mironov '17], ~ Moments Accountant [Abadi et al '16]

 $\circ \quad \delta_p(\epsilon), \epsilon_p(\delta)$: Upper/lower bounds using PLD

Numerically tight accounting using Privacy Loss Distributions

e.g. [Koskela-Jalko-Honkela '20]

Shuffle S:

 \circ $\delta_{c}(\epsilon)$, $\epsilon_{c}(\delta)$: Lower bounds

"How Private Are DP-SGD Implementations" [Chua et al '24]

The common practice of implementing *S* but analyzing *P* can give vacuous privacy claims!

Our Contribution: Novel Best-Of-Both-Worlds Batch Generator

Comparing different samplers...

$1\{ x_i \in S_t \}$ For $t \in [T]$, $i \in [n]$.	Independent across x _i	Not independent across x _i
Independent across S _t	Poisson subsampling	Fixed-Size Independent Sampling (a.k.a. "sampling without replacement")
Not independent across S _t		Shuffling
o o		

• ~37% (1/e) fraction of examples don't even get used in a single epoch of training.

Some probability of using examples more than once!

• Privacy guarantee is incomparable to Shuffling or even Deterministic batching. Namely, $\delta_{\mathcal{D}}(\epsilon) > \delta_{\mathcal{D}}(\epsilon)$ as $\epsilon \to \infty$.

Worse privacy guarantee:

• non-differing examples leak information about presence of differing example.

Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition* Christian Janos Lebeda[†] Matthew Regehr[‡] Gautam Kamath§ Thomas Steinke¶

Balls-and-Bins sampling!

$$\mathbf{1}\{x_i \in S_t\}$$

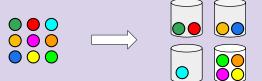
For $t \in [T], i \in [n]$.

Independent across i

Not independent across t

Balls-and-Bins ${\cal B}$

- For i = 1, ..., n:
 - Sample t ~ [T] and set $S_t \leftarrow S_t \cup \{i\}$.



- ✓ Easy to implement:
 - Shuffle the examples
 - Group consecutive examples into a batch
 - Batch size ~ Multinomial distribution

Concurrent work!

Balls-in-Bins sampling in DP-MF.

Near Exact Privacy Amplification for Matrix Mechanisms

Christopher A. Choquette-Choo* Thomas Steinke* Arun Ganesh[†] Saminul Haque[‡] Abhradeep Thakurta*

Numerical Privacy Analysis

Theorem: Training with Balls-And-Bins sampling satisfies (ε, δ) -DP:

$$\Leftrightarrow \text{ for all E} \subseteq \mathbb{R}^T \text{: } P_{\mathcal{B}}(E) \text{ - } e^{\varepsilon} \, Q_{\mathcal{B}}(E) \leq \delta \text{, and } Q_{\mathcal{B}}(E) \text{ - } e^{\varepsilon} \, P_{\mathcal{B}}(E) \leq \delta \text{ where }$$

$$P_{\mathcal{B}} = \sum_{t=1}^T \frac{1}{T} \, \mathcal{N}(e_t, \sigma^2 I_T) \qquad \qquad Q_{\mathcal{B}} = \mathcal{N}(0, \sigma^2 I_T)$$

Corollary: $\delta_{\mathcal{B}}(\epsilon) \leq \delta_{\mathcal{S}}(\epsilon) \leq \delta_{\mathcal{D}}(\epsilon)$ for all ϵ .

Balls-and-Bins sampling is always at least as private as Shuffle and Deterministic.

Goal: Compute $\sup_{E} P_{\mathcal{B}}(E) - e^{\varepsilon}Q_{\mathcal{B}}(E)$ (†)

Lemma: (†) =
$$\mathbb{E}_{\mathbf{x} \sim \mathbf{P}} \left[1 - e^{\varepsilon \cdot \mathbf{L}(\mathbf{x})} \right]_+$$
 where $\mathbf{L}(\mathbf{x}) := \log(\mathbf{P}_{\mathcal{B}}(\mathbf{x}) / \mathbf{Q}_{\mathcal{B}}(\mathbf{x})) = \log\left(\sum_{t=1}^{T} e^{x_t/\sigma^2}\right) - \log T - \frac{1}{2\sigma^2}$

Idea (Monte Carlo sampling [Wang et al. '23]):

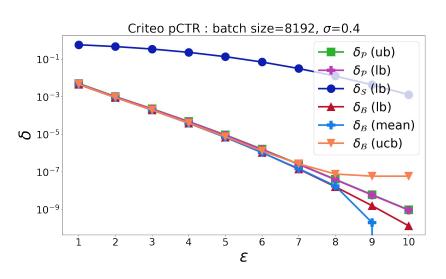
- Sample x~P many times
- Compute average of $[1 e^{\varepsilon L(x)}]_{\perp}$ across the x's.

Challenges:

- Need lot of samples when δ is small. \Rightarrow Idea #1: Use importance sampling
- Each x is T-dimensional, and T can be large. ⇒ Idea #2: Use order statistics sampling

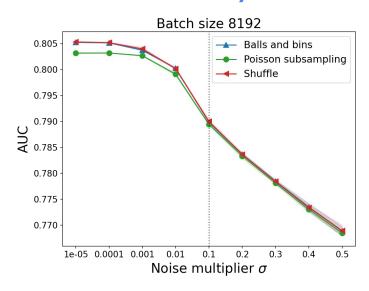
Results

Privacy analysis



 Balls-and-bins has better privacy than Poisson subsampling.

Model utility



 Balls-and-bins has similar utility to Shuffling, and better utility than Poisson subsampling.

Summary

- "Balls-and-Bins" sampler is the most natural batch sampler for DPSGD.
- Compared to other methods: Balls-and-Bins improves on privacy or utility.
- For privacy accounting, we give an advanced Monte Carlo accounting method.
- All privacy analysis code open sourced @
 - https://github.com/google-research/google-research/blob/master/dpsqd batch sampler accounting/balls and bins.py

Future Directions

- Privacy Accounting for Balls-and-Bins sampler?
 - o **Ideal:** deterministic procedure to estimate privacy parameters to any accuracy.
 - [<u>Feldman-Shenfeld '25</u>]: Balls-and-Bins is no worse than Poisson in an asymptotic sense.
 Also provides some numerical upper bounds via PLD (worse than Poisson) and RDP.

Thank you!